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ABSTRACT  

We investigate the aggregation of Violanthrone-78 (VO-78), a model 
asphaltene compound, in mixtures of toluene and n-heptane (heptol) using 
spectroscopic and dynamic and static light scattering techniques. The light 
scattering experiments were conducted using pure toluene and n-heptane, 
as well as 25/75, 50/50, and 75/25 heptol solvents. Furthermore, the 
concentration of VO-78 varied from 10-8 M to 10-3 M in these suspensions. 
The dynamic light scattering experiments were used to study the aggregate 
sizes from the intensity autocorrelation function at different n-heptane 
volume fractions. The results show the onset of aggregation of about 50 % 
n-heptane volume fractions. The aggregate sizes in toluene, within the 
range of concentrations examined, were below the instrument's detection 
limit (< 5 nm) but increased with increasing dosages of n-heptane. On the 
other hand, the aggregate size in pure heptane was observed to be greater 
than the maximum limit of the instrument (> 10 µm). Furthermore, the 
static light scattering experiments provided an anomalous behavior. 
Increasing concentrations of VO-78 in the solvent resulted in lowering the 
parameter Kc/Rq, where c is the molar concentration. 
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I. INTRODUCTION 

Over the past few decades, investigations into the molecular structure of asphaltenes and their analogs 
have been carried out using various methodologies ranging from simulations to molecular spectroscopic 
techniques with a view to unraveling the mystery surrounding the asphaltene moiety [1]–[5]. Spectroscopic 
techniques ranging from Ultraviolet-Visible (UV-Vis) to Mass Spectrometry (MS) have been utilized to 
elucidate the structure of asphaltenes and their molecular analogs [6]–[8]. The application of these 
spectroscopic techniques has provided essential structural details which have served as clues to the actual 
asphaltene structure which has eluded scientists for years. Other techniques such as Gel Permeation 
Chromatography, Vapour Pressure Osmometry (VPO), X-ray, and neutron small-angle scattering (SANS) 
[8] have also been employed to deduce the size of polydispersity and the weighted average molecular 
weight. Most of these techniques require either the adsorption of the sample onto a modified substrate, very 
dilute asphaltene concentrations, or single solvent systems [5]. Such sample preparation methods may 
modify the native structure of the asphaltene systems. In some instances, the true colloidal nature of these 
molecules in natural petroleum environments might be absent in such artificial solvent environments [9]. 

Asphaltenes are generally soluble in toluene and insoluble in n-heptane [8],[10]–[13]. Hence, mixed 
solvent systems may reveal structural characteristics of asphaltene aggregates that may not be noticeable in 
pure/single solvent systems. The work reported herein focuses on the investigation of the aggregation 
behavior of Violanthrone-78 (VO-78) in a mixed solvent system containing different proportions of n-
heptane and toluene (heptol). The structure of VO-78 is shown in Fig. 1 [3],[11],[14]. Simultaneous 
multiangle static and dynamic light scattering (SMSDLS) was used for the investigation. 

Static light scattering (SLS) is a sensitive, non-invasive technique that depends on the measurement of 
the intensity of light scattered particles as a function of the angle from the transmitted beam [7],[15],[16]. 
The relationship between light intensity and scattering angle depends on factors such as particle size, shape, 
refractive index, and size distribution [16]. Consequently, SLS measurements can provide information 
about all these aforementioned quantities. 
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Fig. 1. Structure of Violanthrone-78 (VO-78) showing its functional group compositions. 

 
Dynamic light scattering (DLS), on the other hand, provides the intensity autocorrelation function, which 

captures the Brownian motion of the suspended entities in a solvent, leading to an estimation of the 
hydrodynamic radii of these entities. Performing these two light scattering modes concurrently provides a 
rich set of information regarding the aggregates, including the hydrodynamic dimensions, the molecular 
weights, and the second virial coefficients [15],[16]. In this paper, we explore the use of this technique on 
the model asphaltene-like molecule to study its aggregation in different pure and mixed solvents with 
different levels of aromaticity. More specifically, we aim to relate the propensity of aggregation of these 
molecules to the degree of solvent aromaticity and their concentration in the solvent. 

 

II. MATERIALS AND METHODS 

A. Reagents and Materials 
HPLC grade toluene and n-heptane (Analar grade) were obtained from Fischer Scientific Company 

(Ottawa, ON) and used as received. All solutions and reagents were filtered on Whatman Anatop 25 (0.02 
µm) filters. Violanthrone–78 (VO–78), a model asphaltene compound, was purchased from Aldrich 
(Milwaukee, WI) and used as received. 

B. Asphaltene-Model Compound Sample Preparation 
UV–Vis and fluorescence spectroscopic measurements employed Violanthrone–78 (VO–78; 

C70H84O6; MW = 1021.4) solution concentrations of 10–4 g/mL, 10–5 g/mL, 10–6 g/mL and 10-7 g/mL 
prepared using HPLC grade toluene as solvent. For the light scattering studies, 1 mM solutions of 
Violanthrone–78 (VO–78; C70H84O6; MW = 1021.4) were prepared using HPLC grade toluene and n-
heptane as solvents. All solutions and reagents were filtered using Whatman Anatop 25 (0.02 µm) filters. 
Sample solutions were sonicated for 30 min at room temperature using an ultrasonic bath (Elma) equipped 
with a degasser before analysis to dislodge bubbles and ensure uniform particle distribution within 
solutions. Refractive indices measured at 23 ± 0.02 ℃ on a Projection Abbe refractometer for 100 % 
toluene, 100% n-heptane, and 50:50 heptol were 1.4940, 1.3850, and 1.4392 RIU, respectively. These 
results suggest a linear dependence of the refractive index with n-heptane volume fraction in the mixed 
solvent system. The mixture was homogenized in an ultrasound bath for 5 min and left to equilibrate. This 
solution was the stock solution from which other solutions were prepared and diluted to 10–4 g/mL, 10–5 
g/mL, 10-6 g/mL, and 10–7 g/mL solutions of VO–78. Solutions were then placed in an ultrasound bath 
for 5 min to ensure homogeneity. Both filtered and unfiltered solutions were examined to provide insight 
into the aggregation behavior of each extracted asphaltenes. 

C. Spectroscopic Measurements of VO–78 Samples 
UV–vis measurements: T70 single-beam spectrophotometer (PG Instrument Ltd., UK), equipped with 

multi-cell accessories and a dual-source made up of deuterium and tungsten lamps, was used for the UV-
vis measurements. The optical absorption spectral range of 200–1100 nm was used in this study. The 
samples and the reference (toluene) optical cuvettes had a path length of 1 cm. Reproducible results were 
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obtained with precise absorbance measurements. 
Fluorescence measurements: Fluorescence spectroscopic analyses were carried out using Cary Eclipse 

Fluorescence Spectrophotometer (Varian Inc., Australia) equipped with a xenon lamp. The optical 
absorption spectral range of 200–1100 nm was used in this study. The samples and the reference (toluene) 
optical cuvettes had a path length of 1 cm. Fluorescence intensity measurements were reliably reproducible. 

Static Light Scattering Measurements: Light scattering measurements were performed on an ALV/CGS-
3 Goniometer system (Malvern/ALV-GmbH). The ALV/CGS-3 is a self-contained system with a 22 mW 
HeNe Laser, an optical fiber-based detector, and a single-photon detector. It simultaneously measures 
dynamic light (DLS) and static light scattering (SLS). The optical detection has been designed to obtain a 
significantly higher count rate per mW, leading to reduced measurement times for SLS measurement while 
not sacrificing DLS accuracy. The goniometer system has a cell-housing index matching vat filled with 
HPLC grade toluene. The scattering angles studied varied from 60° to 120°. Samples were loaded into a 
sample tube with each sample run at time intervals of 10, 30, 60, 90, 120, 150, and 180 s at three runs for 
each specified time. Toluene was used as a reference standard in all measurements. 

 

III. RESULTS AND DISCUSSION 

A. Spectroscopic Analysis of Violanthrone-78 
To obtain a thorough understanding of asphaltene chemistry and a reasonable estimation of spectral 

characteristics with a model-independent analysis, we chose violanthrone–78 (VO–78), a model asphaltene 
compound with structural features similar to that expected of asphaltene. Violanthrone is a dye of the 
quinonoid series used as a model compound for coal and bitumen in carbonization experiments for which 
its structure is required [9],[11],[14],[17],[18]. Violanthrone–78 and its analogs, such as violanthrone–79 
(VO–79) and quinolone–65 (Q65), have been used in the literature for studies on the asphaltene chemistry 
[10],[14],[17],[19]–[21]. The purpose of this initial stage of our investigation into asphaltene chemistry is 
to provide a platform that mimics asphaltene structural analysis. 

The choice of VO–78 was not only based on its availability and higher solubility in toluene but also on 
its specific properties similar to compounds present in asphaltene. These include high molecular weight, 
aromaticity, naphtenicity, heteroatom content, and the nature of its functional groups. Spectral analysis of 
various violanthrone–78 concentrations of 10-3, 10-4, 10-5, 10-6, and 10-7 g/mL was carried out. The 
UV–vis spectral analysis of 10-5 g/mL VO–78 within the absorption range of 300-800 nm is presented in 
Fig. 2. The two absorption peaks observed at positions 535 and 580 nm in Figure 2 are characteristic of 
porphyrins [20]. The observed wavelength maximum at 580 nm position is consistent with the literature 
[10],[20],[22]. It confirms the absorption of radiation in the porphyrin-type compounds and organic dyes 
[3],[23],[24]. The appearance of these peaks within this spectral region suggests that asphaltene UV–Vis 
absorption is significant in the range of 450 to 650 nm. 

Additional spectroscopic investigation into the fluorescence behavior of violanthrone–78 was undertaken 
to gain insight into its structural characteristics further. In spectral analysis, since excitation is a mirror 
image of emission, it is always prudent to use the wavelength corresponding to the highest excitation peak 
for further fluorescence emission studies. Thus, Fig. 3 shows a fluorescence emission spectrum of a diluted 
solution of VO–78 obtained with a 580–nm excitation wavelength. This spectrum represents the 
overlapping spectra of the many chromophores contained within the VO–78 molecules [20],[25],[26]. The 
observed emission wavelength maximum occurred at 635 nm, characteristic of VO–78 [12],[20],[27]. 

With changes in-ring location and substitution [20],[28],[29], there is bound to be some change in the 
spectral position of the fluorescence emission maximum. Nonetheless, the wavelength of fluorescence 
emission does correlate with chromophore size. 

Although, it is difficult to use the fluorescence emission spectrum to obtain an exact distribution of ring 
sizes since optical absorption and emission constants are different for different chromophores. However, 
these differences in the optical constants are somewhat canceled to some degree because the smaller 
transition strengths in smaller aromatics are offset by their larger quantum yields. Hence, estimating the 
range of the size of asphaltene based on its VO–78 model compound is reasonable. 

It is also our belief that subtle changes in a molecule may be revealed through different fractions and 
concentrations of the molecule. Hence, the need to examine the fluorescence spectra of VO–78 taken at 
different concentrations, as demonstrated in Fig. 3. 
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Fig. 2. UV–Vis spectrum of violanthrone–78 showing 

absorption maximum at 580 nm. 

 
Fig. 3. Emission spectrum of violanthrone–78 showing 

emission maximum at 635 nm. 

 

 
Fig. 4. Emission spectra of different violanthrone–78 showing 

emission maximum at 635 nm. 
 

 
Fig. 5. Plot showing aggregation behavior of VO–78 in varying 

heptol concentrations at a scattering angle of 90°. 
 

 
In Fig. 4, there are the fluorescence spectra of VO–78 taken at different concentrations of 10-3, 10-4,       

10-5, 10-6, and 10-7 g/mL. It was observed that the variations in the fluorescence intensities with 
concentration are consistent with Beer-Lambert's law. Therefore, a peak around 590 nm may be attributable 
to a fluorescent impurity in the sample [10],[20]. However, its true origin can be explained within the limits 
of the spectroscopic tools employed in this study. Again, a tiny shoulder emerges on the higher wavelength 
region of the peaks, particularly at higher concentrations. Applying more detailed structural elucidation 
tools such as NMR and mass spectrometer may help unravel the identity of this shoulder. 

Nevertheless, Mullins and co-workers have used both UV–Vis absorption and fluorescence emission 
spectra within the spectral region employed in their study to estimate the number of fused rings [12],[13], 
[22]. Hence, it is believed that using a known chromophore (VO–78), the molecular weight and structural 
characteristics of asphaltene can be estimated [10],[12],[20]. Furthermore, a strong correlation could be 
established between chromophore size and the molecular size (weight) of the asphaltene moiety based on 
its origin. Besides, there is limited study in the literature on the hydrodynamic radius of VO–78. Hence, it 
is necessary to expand the scope of our study to cover the hydrodynamic radius and aggregation behavior 
of VO–78 in a mixed solvent. 

B. Hydrodynamic Radius–DLS Measurements 
Asphaltenes are generally soluble in toluene and insoluble in n-heptane [3],[13],[24]. Hence, mixed 

solvent systems may reveal structural characteristics of asphaltene aggregates that may not be noticeable in 
pure/single solvent systems. This aspect of the study presented herein looked further into the aggregation 
behavior of Violanthrone–78 (VO–78) in a mixed solvent system containing different proportions of n-
heptane and toluene (heptol). A simultaneous multiangle static and dynamic light scattering (SMSDLS) 
was used for the investigation. The extent of aggregation was examined using dynamic light scattering. Fig. 
5 plots the measured hydrodynamic radius of the VO–78 aggregates obtained at different proportions of n-
heptane in the heptol solvent system. The hydrodynamic radii were measured at a scattering angle of 90°. 
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The measurements were reported from a VO–78 concentration of 1 mM. The plot reveals that the onset 
of aggregation of the asphaltene–like molecules in heptol occurs above ca. 25 % volume percent of n-
heptane, and the aggregate hydrodynamic radius continues to increase as the heptane volume fraction is 
increased. The particle size for pure toluene was below the instrument's detection limit. 

For pure heptane, on the other hand, the reported aggregate size was found to be much larger than the 
upper limit of a size that can be determined using light scattering. Each VO–78 molecule is reasonably 
large, with a polyaromatic ring system that can undergo π-π stacking and hydrophobic interactions in a less 
polar solvent like n-heptane. These molecules did not form an aggregate in toluene over the studied range 
of concentrations. The extent of aggregation increases slowly with an increase in the percentage of n-
heptane. Thus, the work presented in this section has revealed novel aggregation behavior, which opens the 
door to further developments into the aggregation behavior of asphaltenes. It further shows the potential of 
dynamic and static light scattering techniques in probing asphaltene surrogates. 

C. Static Light Scattering 
The molecular weight dependence on both heptol concentration and scattering angle was probed using 

static light scattering between 60° and 120°. Fig. 6 shows a Zimm plot of VO–78. A Zimm plot of our data 
revealed a trend contrary to what one would have observed from a typical trend of increasing concentration 
with a concomitant increase in KC/R values [15],[16],[30]. We could not obtain a 1/Mw value by simple 
extrapolation. This observation was not an anomaly but showed a unique event regarding monomeric 
entities of the VO–78 molecule [10],[11],[17]. At low concentrations, there is less interaction between the 
monomer units. However, increased concentration results in a concomitant effect of a greater repulsion 
between the monomer units leading to a high degree of dissociation within the asphaltene model compound. 
Further studies will be required using other model compounds and known polymeric molecules to 
understand this trend entirely. 

 

 
Fig. 6. Zimm plot showing aggregation behavior of VO–78 in varying heptol concentrations at a scattering angle of 60° to 120°. 

 

IV. CONCLUSION 

The work presented in the paper reveals novel aggregation behavior, which opens the door to further 
developments into the aggregation behavior of asphaltenes. Light scattering may serve as a means of 
systematically assessing the aggregation behavior and dynamics of asphaltenes and, consequently, the role 
of such molecules in the extraction and upgrading of bitumen and heavy oil. It further shows the potential 
of dynamic and static light scattering techniques in probing asphaltene surrogates. 
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