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I. INTRODUCTION 

Iron oxide nanoparticles have been previously described 

[1], [2]. Study reported different methods of synthesis of 

magnetite (Fe3O4) nanoparticles such as co-precipitation [3], 

sol-gel [4], hydrothermal [5] and decomposition methods 

[6]. Co-precipitation is a suitable process to produce 

synthetic Fe3O4 nanoparticles, due to its high level of 

efficiency [7]. 

Magnetite (Fe3O44) nanoparticles can support a diversity 

of applications including the development of scientific and 

technological functions [8]. In photocatalysis [9], 

biomedical [10] and adsorption for removal of heavy metals 

[11] or organic matters [12]. Natural humic acid (HA) are 

the most predominant reactive fractions of organic matter 

(NOM) that is present in water resources [12]. [13]. Humic 

acid (HA) consist of a complex polymer of carbonyl, 

phenolic, carboxyl and hydroxyl groups [14]. synthetic 

organic chemicals and trace element Humic can be and carry 

by HA through water treatment facilities and distribution 

systems [13]. 

Simultaneously, HA has disadvantageous effects on the 

taste and appearance water [15]. Mostsevere , humic acid 

(HA) can be react with chlorine during chlorination and 

produce strongly carcinogenic disinfection byproducts 

(DBPs) such as trihalomethanes (THMs) and haloacetic 

acids (HAAs) [16]. Thus, removing of humic acid (HA) in 

water treatment could be paramount and essential for 

environmental and health reasons.]. 

In this paper, we reported the preparation of magnetite 

nanoparticles, characterization and its application to remove 

humic acid (HA) from a synthetic water. We chose in this 

study the chemical Co-precipitation method to prepare the 

magnetite nanoparticles, the characterization with different 

techniques such as XDR, FT-IR, DLS and the application 

was realized by studying in detail the influence of various 

parameters such as solution pH, contact time, solution pH,  
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adsorbate concentration and adsorbent dose. The adsorption 

procedure was also defined by kinetics and isotherm 

analysis. 

 

II. PROCEDURE  

A. Materials 

Ferrous sulfate (FeSO4, 6H2O) and ferric nitrate 

[(Fe(NO3)3] were used as a source of Fe2+ and Fe3+ ions, 

respectively. Sodium hydroxide (NaOH) was used as a base 

in the synthesis of magnetite nanoparticles. PVP was used as 

a stabilizer in solution phase. Humic acid (HA) used in this 

study was purchased from Sigma.  

B. Synthesis of magnetite nanoparticles 

Magnetite nanoparticles were synthesized follow B. Saha 

method [7] where we changed the triethyl amine by NaOH 

and the SDS by PVP. 

C. Characterization of magnetite (Fe3O4) nanoparticles 

Magnetite nanoparticles synthesized were defined by 

several techniques. The XRD analysis of magnetite 

nanoparticles was conducted on X’PERT Pro MPD 

PANALYTICAL with a Cu Kα source (λ = 1.54056 Å). FT-

IR spectra were recorded at 400-4000 cm-1 using Perkin-

Elmer spectrum (FTIR2000). The size distribution and zeta 

potential were obtained with a zetasizer (MALVERN, 

NanoZS). The morphology of the particular was obtained 

with a scanning electron micrographs (MEB). 

D. Adsorption experiments 

experiments of Adsorption were attended in triplicates 

and the results are reported as average. Adsorption 

experiments were conducted at various pH values, contact 

time, initial HA concentration and adsorbent dose. The 

solution pH was adjusted with 0.1 mo.l-1 HCl or NaOH 

solutions. Adsorption experiments were done in flaks 

containing 100 ml of HA solution and 0.1 g of Fe3O4 at 

room temperature. After predetermined contact time, the 

aqueous solution was rapidly separated was by 

centrifugation and the residual concentration of HA in the 

supernatant was measured by a Perkin-Elmer UV-Vis 

spectrophometer (Lamda 25) at 260 nm. The HA adsorption 

capacity of Fe3O4 at any time t (qt, mg.g-1) was calculated 

using the following equation :   

 

 𝑄𝑡 =  
(𝐶𝑂−𝐶𝑡)𝑉

𝑚
                  (1) 

 

where CO (mg.l-1) is the initial concentration of HA, Ct 

(mg.l-1) is the instant concentration of HA at any time t, V 

(L) is the volume of the solution and m (g) is the mass of 

Fe3O4. 

 

III. RESULTS AND DISCUSSION 

The FT-IR spectrum (Figure 1) of magnetite (Fe3O4) 

nanoparticles shows that the characteristics peaks at 580 cm-

1 relate to Fe-O stretching vibration. The bands near 3200 

cm-1 and 1300 cm-1 refer to the O-H stretching vibration. 

The XRD patterns of magnetite nanoparticles samples are 

shown in Figure 2, which revealed the crystalline nature of 

magnetite nanoparticles. A series of characteristic peaks for 

magnetite (Fe3O4) (2ϴ = 30.15°, 35.52°, 47.17°, 53.56°, 

58.23°, 64.01°) were observed and corresponding the crystal 

planes of (220), (311), (400), (422), (511) and (440), 

respectively. These peaks are consistent with standard data 

for magnetite phase (ASTM 89-1397). The average 

crystallite size calculated using the Debye-Scherrer equation 

was found to be 44.14 nm. 

 
Fig. 1. FT-IR spectrum of magnetite (Fe3O4). 

 

 
Fig. 2. XRD patterns of magnetite (Fe3O4). 

 

The uptake of HA by Fe3O4 was studied over a pH range 

of 4-11 and results are given by Fig.3. The plot of Fig.1 

shows a noticeable increase of HA uptake by Fe3O4 from 

11.97 to 26.88 mg. g-1 when solution pH value shifts from 4 

to 8. After pH = 8, the HA uptake decreases slightly and 

while keeping an almost constant pace. This indicates that 

HA uptake onto Fe3O4 nanoparticles is Favorited at higher 

pH values. This may be due to the charges of HA molecules 

and Fe3O4 nanoparticles [22].  
 

 

Fig. 3. Effect of solution pH on HA adsorption onto Fe3O4 (initial HA 
concentration 30 mg/L, Room temperature, contact time 2h). 
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The effect of adsorbent dose on adsorption of HA on 

Fe3O4 was investigated using different dose 0.01 g to 0.08 g 

and the results are showed in Fig.4. The adsorption capacity 

showed by Fig.4 decrease with an increase in adsorbent dose 

and this is may be caused by the higher disponible of the 

exchangeable sites [23].    

 

 

Fig. 4. Effect of adsorbent dose on adsorption of HA on Fe3O4 
(initial HA concentration 30 mg/L, solution pH 6, contact time 2h). 

 

The effect of initial HA concentration was carried out at 

5-50 mg.L-1 as show in Fig. 5. It's well known that the 

initial concentration of adsorbate has almost always an 

effect on adsorption process. Indeed, the HA uptake onto 

Fe3O4 increased as things progress the initial HA 

concentration increases. This may be related to an increase 

driving force, which permits more HA molecules to pass 

from the solution to the adsorbent surface [22]. 

 

 
Fig. 5. Effect of initial HA concentration (solution pH 6, contact time 2h, 

masse 0.03g). 

The effect of contact time on adsorption of onto Fe3O4 

was carried out at 5-70 min. The results are illustrated by 

Fig.6.  

The Fig.6 shows two phases of HA uptake rate onto 

Fe3O4. The first one occurred during the primary 20 min in 

which the absorption rate was elevated and the HA uptake 

reached the level of 80%. This high rate can be explained by 

the presence of a high number of vacant sites on the 

adsorbent surface during the initial phase. The second phase 

began after the primary 20 min in which the HA uptake 

decreases slightly and tend to be constant after 30 min. The 

constant rate implies that adsorption has reached an 

equilibrium state and this is can be explained by the 

presence of repulsive forces between HA molecules in the 

aqueous solution and those on the surface of Fe3O4 [24].  

 

 
Fig. 6. Effect of contact on adsorption of HA onto Fe3O4 (solution pH 6, 

adsorbent dose 0.03g). 

 

In order to understand how the molecules of HA interact 

with the adsorbent at constant temperature, many adsorption 

isotherms were used. The well known of them, and which 

often used to better describe the equilibrium 

adsorption, is Langmuir, Freundlich and Temkin isotherm 

models [25]. The Langmuir isotherm model assumes 

monolayer adsorption onto a surface with a finite number of 

identical sites with no interaction between adsorbed 

molecules [26]. 

Langmuir model is represented as follows: 

 

𝑄𝑒 =  
𝑄𝑚𝑎𝑥𝐾𝐿𝐶𝑒

1+𝐾𝐿𝐶𝑒
         (2) 

 

Where Qe is the amount of HA adsorbed per mass unit of 

Fe3O4 at equilibrium (mg.g-1), Ce is the equilibrium 

concentration of remaining HA in the solution (mg.L-1), 

Qmax is the monolayer biosorption capacity of the 

biosorbent (mg.g-1) and KL is the Langmuir biosorption 

constant (L.mg-1). 

The Linear form of isotherm can be presented as the 

following: 

 
𝐶𝑒

𝑄𝑒
=  

1

𝐾𝐿𝑄𝑚𝑎𝑥
+  

𝐶𝑒

𝑞𝑚𝑎𝑥
         (3) 

 

The Langmuir isotherm of HA adsorption onto Fe3O4 is 

shown in Fig.7. The Freundlich adsorption isotherm is an 

empirical equation based on the adsorption on the 

heterogeneous surface as well as multilayer adsorption [27]. 

The nonlinear form of the Freundlich adsorption isotherm 

can be defined by the following equation: 

 

𝑄𝑒 =  𝐾𝐹𝐶𝑒

1

𝑛            (4) 

 

The Freundlich isotherm constant n is an empirical 

parameter that varies with the degree of heterogeneity and 

KF is related to adsorption capacity. KF and 1/n values were 

determinate in using the linear form of Freundlich isotherm 

described by the following equation: 

 

ln(qe) =  ln(KF) +  1/n ln(Ce)    (5) 
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Fig. 7. Langmuir isotherm of HA adsorption onto Fe3O4. 

 

The Freundlich isotherm of HA adsorption onto Fe3O4 is 

shown in Fig.8.  The Temkin isotherm model is applicable 

to adsorption on heterogeneous surface as well as multilayer 

adsorption and characterized by a unit distribution of 

maximum attraction energy [28]. The Temkin equation is 

given as:  

 

𝑄𝑒 =  𝐵. 𝐿𝑛(𝐾𝑇) +  𝐵. 𝐿𝑛(𝐶𝑒)        (6) 

 
Fig. 8. Freundlich isotherm of HA adsorption onto Fe3O4. 

Where KT is the Temkin constant (L.mg-1) and B is 

constant related to the adsorption heat. The Temkin isotherm 

of HA adsorption onto Fe3O4 is shown in Fig.9. 

 
Fig. 9. Temkin isotherm of HA adsorption onto Fe3O4. 

 

After analyzing the three isotherms, the fitting results 

presented by their correlation coefficient (R2), showed that 

HA adsorption process is better fitted by Temkin model than 

Langmuir or Freundlich models, indicating that adsorption 

of HA onto Fe3O4 is multilayer. 

In order to identify the kinetic rate-determining step 

(slowest step) of adsorption process, two kinetic models 

were used to fit the data including pseudo-first-order and 

pseudo-second-order models. 

The pseudo-first-order [29] is presented as follows:  

 

𝑄𝑡 =  𝑄𝑒(1 − 𝑒(−𝑘1.𝑡))       (7) 

Where qe and qt are the HA adsorption capacities for 

Fe3O4 (mg.g-1) at equilibrium and any time t respectively; 

k1 is the rate constant of pseudo-first-order kinetic model 

(1.min-1). The pseudo-first-order model plots for HA 

adsorption onto Fe3O4 is shown in Fig.10.  
 

 
Fig. 10. Pseudo-first-order kinetic model plots for HA adsorption onto 

Fe3O4. 

 

The pseudo-second-order [30] is given as follows:  

 
𝑡

𝑄𝑡
=  

1

𝑘2𝑄𝑒
2  +  

1

𝑄𝑒
         (8) 

 

where k2 is the rate constant of pseudo-second-order 

kinetic model (g.(mg.min)-1). The pseudo-second-order 

model plots for HA adsorption onto Fe3O4 is shown in 

Fig.11.  

Based on the correlation coefficients (R²) values shown in 

Fig.10 and Fig.11, the pseudo-second-order kinetic model 

can be used to fit  the adsorption process ranging the whole 

contact time field better than the pseudo-first-order kinetic 

model, indicating that the HA adsorption onto Fe3O4 is a 

chemical adsorption [30].  

 

 
Fig. 11. Pseudo-second-order kinetic model plots for HA adsorption onto 

Fe3O4. 
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The adsorption of HA onto Fe3O4 was investigated at 

four different temperatures (25°C, 35°C, 45°C and 55°C). 

The HA adsorption for Fe3O4 at equilibrium decreases when 

the temperature increase from 25°C to 55°C, indicating 

better adsorption at lower temperature and an endothermic 

uptake process [31]. The values of thermodynamic 

parameters such as free energy (∆G°), enthalpy (∆H°) and 

entropy (∆S°) were determined using the following 

equations [32]: 
 

∆𝐺0 =  −𝑅𝑇𝐿𝑛𝐾𝐿        (9) 

 

𝐿𝑛𝐾𝐿 =  
∆𝑆0

𝑅
− 

∆𝐻0

𝑅𝑇
           (10) 

 

Where KL is the constant of equilibrium (ml.g-1) and 

equal to qe/Ce, R is the universal gas constant (8.314 

J.(mol.K)-1) and T is reaction temperature (K). The values of 

∆H° and ∆S° are obtained from the slope and intercept of 

the line plotted by Ln(KL) versus 1/T, respectively (Fig.12). 

 

 
Fig. 12. LnKL versus 1/T. 

 

The obtained thermodynamic parameters for the 

adsorption of HA onto Fe3O4 are listed in table 1 and table 

2. 

 
 

 
 

The negative values of ∆G° at all temperatures and all 

initial HA concentrations indicate the viability of the 

adsorption of HA onto Fe3O4 and the spontaneous process of 

the adsorption. Negative ∆H° values at all initial HA 

concentrations indicate the exothermic of the adsorption 

behaver, and also its magnitude gives information on the 

type of adsorption, which can be either physical or chemical 

[33]. In fact, if ∆H° is comprised between -120 and -40 

kJ.mol-1, the uptake process occurred mainly by chemical 

bonding [34], [35]. However, the value of ∆H° obtained by 

the present work is – 21,722 kJ.mol-1, showing that 

adsorption process of HA onto Fe3O4 was taken place 

mostly via physisorption mechanism. The negative values of 

∆S° indicate a decrease of the chaos at solid-solution 

interface during the adsorption process of HA onto Fe3O4 

[32]. This can be explained by a decrease of free sites on the 

adsorbent area. 

 

IV. CONCLUSION  

Magnetite (Fe3O4) was successfully prepared by chemical 

co-precipitation process. The HA adsorption capacities for 

Fe3O4 increase with an increase in solution pH from 4 to 11 

and are favored for increasing contact time and initial HA 

concentration. The adsorption kinetic of HA onto Fe3O4 

obey a pseudo-second-order model. The equilibrium 

adsorption data of HA onto Fe3O4 fits better with Temkin 

isotherm model than Langmuir and Freundlich isotherms 

model. Thermodynamic parameters indicate the adsorption 

of HA onto Fe3O4 is spontaneous and exothermic in nature. 

The mechanism for the adsorption seems carried out via 

physisorption according to thermodynamic results. It 

involves electrostatic interaction and hydrogen bonding. 

However, chimisorption mechanism could occur but with 

less importance. Results of this work show that Fe3O4 is a 

promising adsorbent for removing HA from aqueous 

solution.   
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