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Remove of Humic Acid From Water Using Magnetite

Nanoparticles

F. Guey, M. Smiri, H. Chemingui, A. B. Dekhil, S. Elarbaoui, and A. Hafiane

ABSTRACT

Synthesis, characterization and utilization of iron oxide nanoparticles
have been a subject of attention in recent years on the base of their
interesting chemical and physics properties. Magnetite (FesOas)
nanoparticles were synthesed by chemical co-precipitation and
characterized using X ray diffraction (XDR), Fourier transmission
spectroscopy (FT-IR), dynamic light scattering and (DLS). FesO4
nanoparticles were successfully removed humic acid (HA) from water.
The influence of pH, contact time, adsorbent nanoparticle doses and HA
concentrations were analyzed. Maximum HA removal occurred at pH 6
(89.63%), 40 mg.L-1 of Magnetite (88.8%), 0.03g of HA (96.64%) and
contact time of 20 min (94.37%). Sorption data fit pseudo-second order
kinetics, indicated a chemical adsorption process. The Langmuir,
Freundlich and Temkin adsorption isotherm models were applied to
describe equilibrium data. Adsorption of HA on magnetite nanoparticles
was well described by Temkin model. The maximum adsorption capacity
was 128.23 mg.g-1. Fe304 nanoparticles were promising potential
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I. INTRODUCTION

Iron oxide nanoparticles have been previously described
[1], [2]. Study reported different methods of synthesis of
magnetite (Fes0.) nanoparticles such as co-precipitation [3],
sol-gel [4], hydrothermal [5] and decomposition methods
[6]. Co-precipitation is a suitable process to produce
synthetic Fe3Os nanoparticles, due to its high level of
efficiency [7].

Magnetite (Fes044) nanoparticles can support a diversity
of applications including the development of scientific and
technological functions [8]. In photocatalysis [9],
biomedical [10] and adsorption for removal of heavy metals
[11] or organic matters [12]. Natural humic acid (HA) are
the most predominant reactive fractions of organic matter
(NOM) that is present in water resources [12]. [13]. Humic
acid (HA) consist of a complex polymer of carbonyl,
phenolic, carboxyl and hydroxyl groups [14]. synthetic
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organic chemicals and trace element Humic can be and carry
by HA through water treatment facilities and distribution
systems [13].

Simultaneously, HA has disadvantageous effects on the
taste and appearance water [15]. Mostsevere , humic acid
(HA) can be react with chlorine during chlorination and
produce strongly carcinogenic disinfection byproducts
(DBPs) such as trihalomethanes (THMs) and haloacetic
acids (HAAs) [16]. Thus, removing of humic acid (HA) in
water treatment could be paramount and essential for
environmental and health reasons.].

In this paper, we reported the preparation of magnetite
nanoparticles, characterization and its application to remove
humic acid (HA) from a synthetic water. We chose in this
study the chemical Co-precipitation method to prepare the
magnetite nanoparticles, the characterization with different
techniques such as XDR, FT-IR, DLS and the application
was realized by studying in detail the influence of various
parameters such as solution pH, contact time, solution pH,
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adsorbate concentration and adsorbent dose. The adsorption
procedure was also defined by Kkinetics and isotherm
analysis.

Il. PROCEDURE

A. Materials

Ferrous sulfate (FeSO4, 6H20) and ferric nitrate
[(Fe(NOs)s] were used as a source of Fe?* and Fe®* ions,
respectively. Sodium hydroxide (NaOH) was used as a base
in the synthesis of magnetite nanoparticles. PVP was used as
a stabilizer in solution phase. Humic acid (HA) used in this
study was purchased from Sigma.

B. Synthesis of magnetite nanoparticles

Magnetite nanoparticles were synthesized follow B. Saha
method [7] where we changed the triethyl amine by NaOH
and the SDS by PVP.

C. Characterization of magnetite (Fe304) nanoparticles

Magnetite nanoparticles synthesized were defined by
several techniques. The XRD analysis of magnetite
nanoparticles was conducted on X’PERT Pro MPD
PANALYTICAL with a Cu Ka source (A = 1.54056 A). FT-
IR spectra were recorded at 400-4000 cm-1 using Perkin-
Elmer spectrum (FTIR2000). The size distribution and zeta
potential were obtained with a zetasizer (MALVERN,
NanoZS). The morphology of the particular was obtained
with a scanning electron micrographs (MEB).

D. Adsorption experiments

experiments of Adsorption were attended in triplicates
and the results are reported as average. Adsorption
experiments were conducted at various pH values, contact
time, initial HA concentration and adsorbent dose. The
solution pH was adjusted with 0.1 mo.l-1 HCI or NaOH
solutions. Adsorption experiments were done in flaks
containing 100 ml of HA solution and 0.1 g of Fe;O4 at
room temperature. After predetermined contact time, the
aqueous solution was rapidly separated was by
centrifugation and the residual concentration of HA in the
supernatant was measured by a Perkin-Elmer UV-Vis
spectrophometer (Lamda 25) at 260 nm. The HA adsorption
capacity of Fe;O4 at any time t (qt, mg.g-1) was calculated
using the following equation :

_ (co-ctyv

Q= —1" @
where CO (mg.l-1) is the initial concentration of HA, Ct
(mg.I-1) is the instant concentration of HA at any time t, V
(L) is the volume of the solution and m (g) is the mass of
F63O4.

I1l. RESULTS AND DISCUSSION

The FT-IR spectrum (Figure 1) of magnetite (Fe304)
nanoparticles shows that the characteristics peaks at 580 cm-
1 relate to Fe-O stretching vibration. The bands near 3200
cm-1 and 1300 cm-1 refer to the O-H stretching vibration.
The XRD patterns of magnetite nanoparticles samples are
shown in Figure 2, which revealed the crystalline nature of
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magnetite nanoparticles. A series of characteristic peaks for
magnetite (Fe304) (206 = 30.15°, 35.52°, 47.17°, 53.56°,
58.23°, 64.01°) were observed and corresponding the crystal
planes of (220), (311), (400), (422), (511) and (440),
respectively. These peaks are consistent with standard data
for magnetite phase (ASTM 89-1397). The average
crystallite size calculated using the Debye-Scherrer equation
was found to be 44.14 nm.
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Fig. 1. FT-IR spectrum of magnetite (FesO4).
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Fig. 2. XRD patterns of magnetite (Fe3Oy).

The uptake of HA by Fe304 was studied over a pH range
of 4-11 and results are given by Fig.3. The plot of Fig.1
shows a noticeable increase of HA uptake by Fe304 from
11.97 to 26.88 mg. g-1 when solution pH value shifts from 4
to 8. After pH = 8, the HA uptake decreases slightly and
while keeping an almost constant pace. This indicates that
HA uptake onto Fe304 nanoparticles is Favorited at higher
pH values. This may be due to the charges of HA molecules
and Fe304 nanoparticles [22].
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Fig. 3. Effect of solution pH on HA adsorption onto Fe;O, (initial HA
concentration 30 mg/L, Room temperature, contact time 2h).
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The effect of adsorbent dose on adsorption of HA on
Fe304 was investigated using different dose 0.01 g to 0.08 g
and the results are showed in Fig.4. The adsorption capacity
showed by Fig.4 decrease with an increase in adsorbent dose
and this is may be caused by the higher disponible of the
exchangeable sites [23].
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Fig. 4. Effect of adsorbent dose on adsorption of HA on Fe;O,
(initial HA concentration 30 mg/L, solution pH 6, contact time 2h).

The effect of initial HA concentration was carried out at
5-50 mg.L-1 as show in Fig. 5. It'swell known that the
initial concentration of adsorbate has almost always an
effect on adsorption process. Indeed, the HA uptake onto
Fe304 increased as things progress the initial HA
concentration increases. This may be related to an increase
driving force, which permits more HA molecules to pass
from the solution to the adsorbent surface [22].
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Fig. 5. Effect of initial HA concentration (solution pH 6, contact time 2h,
masse 0.03g).

The effect of contact time on adsorption of onto Fe304
was carried out at 5-70 min. The results are illustrated by
Fig.6.

The Fig.6 shows two phases of HA uptake rate onto
Fe304. The first one occurred during the primary 20 min in
which the absorption rate was elevated and the HA uptake
reached the level of 80%. This high rate can be explained by
the presence ofa high number of vacant sites on the
adsorbent surface during the initial phase. The second phase
began after the primary 20 min in which the HA uptake
decreases slightly and tend to be constant after 30 min. The
constant rate implies that adsorption has reached an
equilibrium state and this is can be explained by the
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presence of repulsive forces between HA molecules in the
aqueous solution and those on the surface of Fe304 [24].
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Fig. 6. Effect of contact on adsorption of HA onto Fe;O, (solution pH 6,
adsorbent dose 0.03g).

In order to understand how the molecules of HA interact
with the adsorbent at constant temperature, many adsorption
isotherms were used. The well known of them, and which
often used to better describe the equilibrium
adsorption, is Langmuir, Freundlich and Temkin isotherm
models [25]. The Langmuir isotherm model assumes
monolayer adsorption onto a surface with a finite number of
identical sites with no interaction between adsorbed
molecules [26].

Langmuir model is represented as follows:

_ QmaxKLCe
Qe = 14K1Ce &)

Where Qe is the amount of HA adsorbed per mass unit of
Fe304 at equilibrium (mg.g-1), Ce is the equilibrium
concentration of remaining HA in the solution (mg.L-1),
Qmax is the monolayer biosorption capacity of the
biosorbent (mg.g-1) and KL is the Langmuir biosorption
constant (L.mg-1).

The Linear form of isotherm can be presented as the
following:

Szt (3

Qe K1.Qmax Amax

The Langmuir isotherm of HA adsorption onto Fe304 is
shown in Fig.7. The Freundlich adsorption isotherm is an
empirical equation based on the adsorption on the
heterogeneous surface as well as multilayer adsorption [27].
The nonlinear form of the Freundlich adsorption isotherm
can be defined by the following equation:

Qo = KiCl 4)

The Freundlich isotherm constant n is an empirical
parameter that varies with the degree of heterogeneity and
KF is related to adsorption capacity. KF and 1/n values were
determinate in using the linear form of Freundlich isotherm
described by the following equation:

ln(qe) = ln(KF) + 1/n1n(ce) (5)
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Langmuir isotherm
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Fig. 7. Langmuir isotherm of HA adsorption onto Fe;Os.

The Freundlich isotherm of HA adsorption onto Fe304 is
shown in Fig.8. The Temkin isotherm model is applicable
to adsorption on heterogeneous surface as well as multilayer
adsorption and characterized by a unit distribution of
maximum attraction energy [28]. The Temkin equation is
given as:

Q. = B.Ln(K;) + B.Ln(C,)  (6)

Freundlich isotherm
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Fig. 8. Freundlich isotherm of HA adsorption onto Fe3O,.

Where KT is the Temkin constant (L.mg-1) and B is
constant related to the adsorption heat. The Temkin isotherm
of HA adsorption onto Fe304 is shown in Fig.9.

Temkin sotherm
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Fig. 9. Temkin isotherm of HA adsorption onto Fe;O,.

After analyzing the three isotherms, the fitting results
presented by their correlation coefficient (R?), showed that
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HA adsorption process is better fitted by Temkin model than
Langmuir or Freundlich models, indicating that adsorption
of HA onto Fe304 is multilayer.

In order to identify the Kinetic rate-determining step
(slowest step) of adsorption process, two Kinetic models
were used to fit the data including pseudo-first-order and
pseudo-second-order models.

The pseudo-first-order [29] is presented as follows:

e = Qe(1—et)y (7

Where ge and gt are the HA adsorption capacities for
Fe304 (mg.g-1) at equilibrium and any time t respectively;
k1 is the rate constant of pseudo-first-order kinetic model
(1.min-1). The pseudo-first-order model plots for HA
adsorption onto Fe304 is shown in Fig.10.
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Fig. 10. Pseudo-first-order kinetic model plots for HA adsorption onto
F8304.

The pseudo-second-order [30] is given as follows:

t 1 1
—=—+ — 8
Q  k2QF Qe ®)

where k; is the rate constant of pseudo-second-order
kinetic model (g.(mg.min)?1). The pseudo-second-order
model plots for HA adsorption onto Fe304 is shown in
Fig.11.

Based on the correlation coefficients (R?) values shown in
Fig.10 and Fig.11, the pseudo-second-order kinetic model
can be used to fit the adsorption process ranging the whole
contact time field better than the pseudo-first-order kinetic
model, indicating that the HA adsorption onto Fe304 is a
chemical adsorption [30].
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Fig. 11. Pseudo-second-order kinetic model plots for HA adsorption onto
Fe304.
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The adsorption of HA onto Fe304 was investigated at
four different temperatures (25°C, 35°C, 45°C and 55°C).
The HA adsorption for FesO4 at equilibrium decreases when
the temperature increase from 25°C to 55°C, indicating
better adsorption at lower temperature and an endothermic
uptake process [31]. The values of thermodynamic
parameters such as free energy (AG®), enthalpy (AH®) and
entropy (AS°) were determined using the following

equations [32]:
AG® = —RTLnK,  (9)

AS®  AHO
Ink, = == %

(10)

Where K. is the constant of equilibrium (ml.g?') and
equal to ge/Ce, R is the universal gas constant (8.314
J.(mol.K)) and T is reaction temperature (K). The values of
AH° and AS° are obtained from the slope and intercept of
the line plotted by Ln(KL) versus 1/T, respectively (Fig.12).

18
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Fig. 12. LnKL versus 1/T.

The obtained thermodynamic parameters for the
adsorption of HA onto Fe304 are listed in table 1 and table
2.

TABLE 1: AG VALUES.

T(C) T(K) | Co(mg/L) | Cf(mg/L) | Qe Ln Ko AG (-RTLnK)
25 298 40 2.27 125.7666 | 4.014647977 | -3756.611501
35 308 40 3.151 122.8300 | 3.663081423 | -3542.639306
45 318 40 3.751 120.8300 | 3.472362128 | -3467.223032
55 328 40 4.835 117.2166 | 3.188142376 | -3283.531596
TABLE 2: AS AND AH VALUES.
AH (J/mole) AS (J/mole. K)

-21722,819 -39,687

The negative values of AG® at all temperatures and all
initial HA concentrations indicate the viability of the
adsorption of HA onto FesO. and the spontaneous process of
the adsorption. Negative AH° values at all initial HA
concentrations indicate the exothermic of the adsorption
behaver, and also its magnitude gives information on the
type of adsorption, which can be either physical or chemical
[33]. In fact, if AH® is comprised between -120 and -40
kd.mol?, the uptake process occurred mainly by chemical
bonding [34], [35]. However, the value of AH® obtained by
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the present work is — 21,722 kJ.mol?, showing that
adsorption process of HA onto FesOs was taken place
mostly via physisorption mechanism. The negative values of
AS° indicate a decrease of the chaos at solid-solution
interface during the adsorption process of HA onto Fe;O4
[32]. This can be explained by a decrease of free sites on the
adsorbent area.

IV. CONCLUSION

Magnetite (Fes04) was successfully prepared by chemical
co-precipitation process. The HA adsorption capacities for
Fe304 increase with an increase in solution pH from 4 to 11
and are favored for increasing contact time and initial HA
concentration. The adsorption kinetic of HA onto Fe;Os
obey a pseudo-second-order model. The equilibrium
adsorption data of HA onto FesO, fits better with Temkin
isotherm model than Langmuir and Freundlich isotherms
model. Thermodynamic parameters indicate the adsorption
of HA onto Fe30, is spontaneous and exothermic in nature.
The mechanism for the adsorption seems carried out via
physisorption according to thermodynamic results. It
involves electrostatic interaction and hydrogen bonding.
However, chimisorption mechanism could occur but with
less importance. Results of this work show that FesO4 is a
promising adsorbent for removing HA from aqueous
solution.
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