##plugins.themes.bootstrap3.article.main##

We investigate the aggregation of Violanthrone-78 (VO-78), a model asphaltene compound, in mixtures of toluene and n-heptane (heptol) using spectroscopic and dynamic and static light scattering techniques. The light scattering experiments were conducted using pure toluene and n-heptane, as well as 25/75, 50/50, and 75/25 heptol solvents. Furthermore, the concentration of VO-78 varied from 10-8 M to 10-3 M in these suspensions. The dynamic light scattering experiments were used to study the aggregate sizes from the intensity autocorrelation function at different n-heptane volume fractions. The results show the onset of aggregation of about 50 % n-heptane volume fractions. The aggregate sizes in toluene, within the range of concentrations examined, were below the instrument's detection limit (< 5 nm) but increased with increasing dosages of n-heptane. On the other hand, the aggregate size in pure heptane was observed to be greater than the maximum limit of the instrument (> 10 μm). Furthermore, the static light scattering experiments provided an anomalous behavior. Increasing concentrations of VO-78 in the solvent resulted in lowering the parameter Kc/Rq, where c is the molar concentration.

References

  1. Ghosh AK, Chaudhuri P, Kumar B, Panja SS. Review on aggregation of asphaltene vis-a-vis spectroscopic studies. Fuel. 2016 Dec; 185: 541–554.
     Google Scholar
  2. Al-Humaidan FS, Hauser A, Rana MS, Lababidi HMS, Behbehani M. Changes in asphaltene structure during thermal cracking of residual oils: XRD study. Fuel. 2015 Jun; 150: 558–564.
     Google Scholar
  3. Hemmati-Sarapardeh A, Ameli F, Ahmadi M, Dabir B, Mohammadi AH, Esfahanizadeh L. Effect of asphaltene structure on its aggregation behavior in toluene-normal alkane mixtures. Journal of Molecular Structure. 2020 Nov; 1220: 128-605.
     Google Scholar
  4. Hemmati-Sarapardeh A, Dabir B, Ahmadi M, Mohammadi AH, Husein MM. Toward mechanistic understanding of asphaltene aggregation behavior in toluene: The roles of asphaltene structure, aging time, temperature, and ultrasonic radiation. Journal of Molecular Liquids. 2018 Aug; 264: 410–424.
     Google Scholar
  5. Hosseini-Dastgerdi Z, Tabatabaei-Nejad SAR, Khodapanah E, Sahraei E. A comprehensive study on mechanism of formation and techniques to diagnose asphaltene structure; molecular and aggregates: a review: A study on mechanism of formation and structure of asphaltene. Asia-Pac J Chem Eng. 2015 Jan; 10(1): 1–14.
     Google Scholar
  6. Ghosh AK, Chaudhuri P, Kumar B, Panja SS. Review on aggregation of asphaltene vis-a-vis spectroscopic studies. Fuel. 2016 Dec; 185: 541–554.
     Google Scholar
  7. Lobato MD, Pedrosa JM, Hortal AR, Martínez-Haya B, Lebrón-Aguilar R, Lago S. Characterization and Langmuir film properties of asphaltenes extracted from Arabian light crude oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2007 Apr; 298(1–2): 72–79.
     Google Scholar
  8. Hassanzadeh M, Abdouss M. A comprehensive review on the significant tools of asphaltene investigation. Analysis and characterization techniques and computational methods. Journal of Petroleum Science and Engineering. 2022 Jan; 208: 109611.
     Google Scholar
  9. Jian C, Tang T. Molecular Dynamics Simulations Reveal Inhomogeneity-Enhanced Stacking of Violanthrone-78-Based Polyaromatic Compounds in n -Heptane–Toluene Mixtures. J Phys Chem B. 2015 Jul 9; 119(27): 8660–8668.
     Google Scholar
  10. Jian C, Tang T, Bhattacharjee S. Probing the Effect of Side-Chain Length on the Aggregation of a Model Asphaltene Using Molecular Dynamics Simulations. Energy Fuels. 2013 Apr 18; 27(4): 2057–2067.
     Google Scholar
  11. Jian C, Tang T, Bhattacharjee S. Molecular Dynamics Investigation on the Aggregation of Violanthrone78-Based Model Asphaltenes in Toluene. Energy Fuels. 2014 Jun 19; 28(6): 3604–3613.
     Google Scholar
  12. Zhang L, Chen P, Pan S, Liu F, Pauchard V, Pomerantz AE, Banerjee S, Yao N, Mullins OC. Structure–Dynamic Function Relations of Asphaltenes. Energy Fuels. 2021 Sep 2; 35(17): 13610–13632.
     Google Scholar
  13. Mullins OC. The Asphaltenes. Annual Rev Anal Chem. 2011 Jul 19; 4(1): 393–418.
     Google Scholar
  14. Cyran JD, Krummel AT. Probing structural features of self-assembled violanthrone-79 using two dimensional infrared spectroscopy. The Journal of Chemical Physics. 2015 Jun 7; 142(21): 212-435.
     Google Scholar
  15. Paridar S, Solaimany Nazar AR, Karimi Y. Experimental evaluation of asphaltene dispersants performance using dynamic light scattering. Journal of Petroleum Science and Engineering. 2018 Apr; 163: 570–575.
     Google Scholar
  16. Trefalt G, Szilagyi I, Oncsik T, Sadeghpour A, Borkovec M. Probing Colloidal Particle Aggregation by Light Scattering. Chimia. 2013 Nov 27; 67(11): 772.
     Google Scholar
  17. Lan T, Zeng H, Tang T. Understanding Adsorption of Violanthrone-79 as a Model Asphaltene Compound on Quartz Surface Using Molecular Dynamics Simulations. J Phys Chem C. 2018 Dec 20; 122(50): 28787–28796.
     Google Scholar
  18. Gruen H, Görner H. Properties of 16,17-disubstituted dihydroviolanthrones formed by reaction of violanthrones with photogenerated radicals. Photochem Photobiol Sci. 2010; 9(8): 1088.
     Google Scholar
  19. Jalali K, Shahad R, Rashid AN, Hawlader S, Jian C. Solvent Nuances Modulate the Decreasing Effect of a Model Asphaltene on Interfacial Tension. Energy Fuels. 2020 Nov 19; 34(11): 13862–13870.
     Google Scholar
  20. González MF, Stull CS, López-Linares F, Pereira-Almao P. Comparing Asphaltene Adsorption with Model Heavy Molecules over Macroporous Solid Surfaces. Energy Fuels. 2007 Jan 1; 21(1): 234–2341.
     Google Scholar
  21. Jian C, Poopari MR, Liu Q, Zerpa N, Zeng H, Tang T. Reduction of Water/Oil Interfacial Tension by Model Asphaltenes: The Governing Role of Surface Concentration. J Phys Chem B. 2016 Jun 30; 120(25): 5646–5654.
     Google Scholar
  22. Andrews AB, McClelland A, Korkeila O, Demidov A, Krummel A, Mullins OC, Chen Z. Molecular Orientation of Asphaltenes and PAH Model Compounds in Langmuir−Blodgett Films Using Sum Frequency Generation Spectroscopy. Langmuir. 2011 May 17 ;27(10): 6049–6058.
     Google Scholar
  23. Tehfe MA, Lalevée J, Morlet-Savary F, Graff B, Fouassier JP. A Breakthrough toward Long Wavelength Cationic Photopolymerization: Initiating Systems Based on Violanthrone Derivatives and Silyl Radicals. Macromolecules. 2011 Nov 8; 44(21): 8374–8379.
     Google Scholar
  24. Acevedo S, Castro A, Negrin JG, Fernández A, Escobar G, Piscitelli V, Delolme F, Dessalces G. Relations between Asphaltene Structures and Their Physical and Chemical Properties: The Rosary-Type Structure. Energy Fuels. 2007 Jul 1;21(4):2165–75.
     Google Scholar
  25. Peng P, Morales-Izquierdo A, Hogg A, Strausz OP. Molecular Structure of Athabasca Asphaltene: Sulfide, Ether, and Ester Linkages. Energy Fuels. 1997 Nov 1; 11(6): 1171–1187.
     Google Scholar
  26. Strausz OP, Peng P, Murgich J. About the Colloidal Nature of Asphaltenes and the MW of Covalent Monomeric Units. Energy Fuels. 2002 Jul 1; 16(4) :809–822.
     Google Scholar
  27. Shi M, Hao F, Zuo L, Chen Y, Nan Y, Chen H. Effect of substituents on the aggregate structure and photovoltaic property of violanthrone derivatives. Dyes and Pigments. 2012 Nov; 95(2): 377–383.
     Google Scholar
  28. Peng P, Morales-Izquierdo A, Hogg A, Strausz OP. Molecular Structure of Athabasca Asphaltene: Sulfide, Ether, and Ester Linkages. Energy Fuels. 1997 Nov 1; 11(6): 1171–1187.
     Google Scholar
  29. Strausz OP, Safarik I, Lown EM, Morales-Izquierdo A. A Critique of Asphaltene Fluorescence Decay and Depolarization-Based Claims about Molecular Weight and Molecular Architecture. Energy Fuels. 2008 Mar 1; 22(2): 1156–1166.
     Google Scholar
  30. Alimohammadi S, Zendehboudi S, James L. A comprehensive review of asphaltene deposition in petroleum reservoirs: Theory, challenges, and tips. Fuel. 2019 Sep ;252: 753–791.
     Google Scholar