Food Resources in The Gambia: Nutrition and Herbal Medicine
##plugins.themes.bootstrap3.article.main##
The Gambia, 'The smiling Coast' of Africa, is a strip of low lying country located between latitudes 13o 00’ and 13o 50’ N and longitudes 16o 50’ and 13o 45’ W, with a total land boundary of 740 km, and dense population of 1,857,181. The two distinct climates are the rainy and dry seasons. The dry season which lasts from October till May is characterized by dry dusty wind; while the wet season lasts from June till early October, with total annual rainfall that varies from the coastline inwards. Based on the rainfall pattern, the three major agroecological zones include Sahelian, Sudan-Sahelian and Sudan-Guinean which favour the cultivation of some cash crops, food crops, and herbal plants. Foods, in the form of liquid or solid, are sources of nutrition and medicine for good health; malnutrition, or poison. Foods and nutrition are essential for maintaining good health and preventing disease. Not only is malnutrition prevalent in The Gambia, but most of the populace also seemed unaware of the content, quality, composition, the nutritive, or medicinal value of the foods consumed. In this review, the chemical, medicinal, and nutritive values of some commonly consumed or traditional foods and drinks and the names of some herbal plants and their uses in The Gambia are reported.
References
-
Hydrology of The Gambia Available at:http://earthwise.bgs.ac.uk/index.php/Hydrogeology_of_Gambia
Google Scholar
1
-
Government of the Gambia. The Gambia’s Second National Communication under the United Nations Framework Convention on Climate Change. The DHS Program ICF Rockville, Maryland, USA, 2012, p. 32.
Google Scholar
2
-
Gambia Bureau of Statistics Accessed at: https://www.gbosdata.org/topics/population-and-demography/distribution-of-the-gambian-population-by- ethnicit
Google Scholar
3
-
Mudambi SR; Rajagopal MV. Fundamentals of Foods, Nutrition and Diet Therapy, 5th ed. New Age Int. Pub. Ltd., New
Google Scholar
4
-
Food and Agriculture Organization (FAO). Improving Food Security and Nutrition in The Gambia Through Food Fortification. FAO Bulletin, January 2022, Issue 1, p.1.
Google Scholar
5
-
Hoareau L, Da Silva EJ. Medicinal plants: A re-emerging health aid. Eletron. J. Biotechnol.1999; 2: 56 – 70.
Google Scholar
6
-
Edeoga HO, Okwu DE, Mbaebie BO. Phytochemical constituents of some Nigerian medicinal plants. Afr. J. Biotechnol. 2005; 4: 685 – 688.
Google Scholar
7
-
Abubakar MA, Etonihu AC, Kigbu PE, Owuna JE, Audu SI. Phytochemical and Antimicrobial Analyses of Leaf Extracts of Cerathoteca sesamoides and Chromolaena odorata. International J. Research- GRANTHAALAYAH, 2020; 8 (8), 65–74. DOI: https://doi.org/10.29121/granthaalayah.v8.i8.2020.435.
Google Scholar
8
-
Agra MF, Freitas PF, Barbosa-Filho JM. Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. Rev. Bras. Farmacogn., 2007; 17: 114 – 140.
Google Scholar
9
-
World Health Organization (WHO). Post-harvest and pressing technology of staple food. Technical Compendium of WHO Agricultural Science Bulletin, Vol. 88. Geneva, World Health Organization, 2005, pp. 171-172.
Google Scholar
10
-
World Health Organization (WHO). Gambia Observes African Traditional day (TRM), 2012.
Google Scholar
11
-
Bargelès C. Gambia Will Integrate Traditional Medicine in Health System. The Daily Observer (Banjul), 19 January 2015.
Google Scholar
12
-
Ouédraogo M, Lamien-Sanou A, Ramdé, N, Ouédraogo AS, Ouédraogo M, Zongo, SP. et al. Protective effect of Moringa oleifera leaves against gentamicin-induced nephrotoxicity in rabbits. Exp. Toxicol. Pathol., 2013; 65: 335 – 339.
Google Scholar
13
-
Saha S, Verma RJ. Efficacy study of dolichos biflorus in the management of nephrotoxicity. Asian Pac. J. Trop. Biomed., 2012; S1471 – S1476.
Google Scholar
14
-
Xiong H, Chen Y, Zhang X, Gu H, Wang S. An electrochemical biosensor for the rapid detection of DNA damage induced by xanthine oxidase-catalyzed Fenton reaction. Sensor. Actuator. B Chem. 2013; 181: 85 – 91.
Google Scholar
15
-
Butler MS. The role of natural product chemistry in drug discovery. J. Nat. Prod., 2004; 67: 2141 – 2153.
Google Scholar
16
-
Xiao J, Sun GB, Sun B, Wu Y, He L, Wang X et al. Kaempferol protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. Toxicology, 2012; 292: 53 – 62.
Google Scholar
17
-
Tlili N, Feriani A, Saadoui E, Nasri N, Khaldi A. Capparis spinosa leaves extract: source of bioantioxidants with nephroprotective and hepatoprotective effects. Biomed. Pharmacother, 2017; 87: 171 – 179.
Google Scholar
18
-
Nagwani S,Tripathi YB. Amelioration of cisplatin induced nephrotoxicity by PTY: a herbal preparation. Food Chem. Toxicol., 2010; 48: 2253–2258.
Google Scholar
19
-
Athira K, Madhana RM, Lahkar M. Flavonoids, the emerging dietary supplement against cisplatin-induced nephrotoxicity. Chem. Biol. Interact., 2016; 248: 18–20.
Google Scholar
20
-
Peterson A. Traditional Medicine in the Gambia. The University of Maryland McNair Scholars. Undergraduate Research J., 2008; 1(1): 202–207.
Google Scholar
21
-
Mady C, Manuel D, Mama S. The bissap (Hibiscus sabdariffa): composition and principal uses. Fruits, 2009; 64: 179 ‒ 193.
Google Scholar
22
-
Mishra M. Chemistry and Pharmacology of some Hibiscus sp. A Rev J Med & Aroma Plant Sci., 1999; 21(4): 1169 ‒ 1186.
Google Scholar
23
-
Naturland EV. Organic Farming in the Tropics and Sub-Tropics. Exemplary Description of 20 Crops, 1st ed., Germany, 2004: 1-22.
Google Scholar
24
-
Aziz EE, Nadia G. Effect of cobalt and nickel on plant growth, yield and flavonoids content of Hibiscus sabdariffa Australian Journal of Basic and Applied Sciences., 2007; 1(2): 73‒78.
Google Scholar
25
-
Leung A, Foster S. Encyclopedia of Common Natural Ingredients Used in Food, Drugs, and Cosmetics. 2nd ed. New York, John Wiley and Sons, 1996.
Google Scholar
26
-
Duke AJ, Bogenschutz-Godwin MJ, Ducellier J. Handbook of Medicinal Spices. Boca Raton: CRC Press LLC, 2003, pp. 186–187.
Google Scholar
27
-
Neuwinger. H. African Traditional Medicine. Stuttgart: Medpharm Scientific Publication, 2000, pp. 156‒169.
Google Scholar
28
-
Adegunloye B, Omoniyi J, Owolabi O. Mechanisms of the blood pressure lowering effect of the calyx extract of Hibiscus sabdariffa in rats. Afr J. Med. Sci.,1996, 25: 235–238.
Google Scholar
29
-
Odigie I, Ettarh R, Adigun S. Chronic administration of aqueous extract of Hibiscus sabdariffa attenuates hypertension and reverses cardiac hypertrophy in 2K-1C hypertensive rats. J. Ethnopharmacol, 2003; 86: 181–185.
Google Scholar
30
-
Onyenekwe P, Ajani E, Ameh D, Gamaliel K. Antihypertensive effect of roselle calyx infusion in spontaneously hypertensive rats and a comparison of its toxicity with that in Wistar rats. Cell Biochem Funct., 1999; 17: 199–206.
Google Scholar
31
-
Chen C, Chou F, Ho W. Inhibitory effects of Hibiscus sabdariffa L extract on low-density lipoprotein oxidation and anti-hyperlipidemia in fructose-fed and cholesterol-fed rats. J. Sci food and Agr. , 2004; 84:1989–1996.
Google Scholar
32
-
Herrera-Arellano A, Miranda-Sanchez J, Avila-Castro P. Clinical effects produced by a standardized herbal medicinal product of Hibiscus sabdariffa on patients with hypertension. A randomized, double-blind, lisinopril-controlled clinical trial. Planta Med., 2007; 73(1): 6–12.
Google Scholar
33
-
Haji-Faraji M, Haji-Tarkhani A. The effect of sour tea (Hibiscus sabdariffa) on essential hypertension. J. Ethnopharmacol. 1999; 65(3): 231‒236.
Google Scholar
34
-
Lin T, Lin H, Chen C. Hibiscus sabdariffa extract reduces serum cholesterol in men and women. Nutr Res., 2007; 27: 140 – 145.
Google Scholar
35
-
Liu X, Zhang HW, Fu RQ. Anti-tumor effects and mechanism of active components of gingerol in ginger. J. Third Military Medical University, 2019; 39(9): 884–890.
Google Scholar
36
-
Wohlmuth H, Smith MK, Brooks LO, Myers SP, Leach DN. Essential oil composition of diploid and tetraploid clones of ginger (Zingiber officinale Roscoe) grown in Australia. J. Agric.and Food Chemistry, 2006; 54(4): 1414 – 1419.
Google Scholar
37
-
Mao QQ, Xu XY, Cao SY. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods, 2019; 8(6): 185.
Google Scholar
38
-
Lai YS, Lee WC, Lin YE. Ginger essential oil ameliorates hepatic injury and lipid accumulation in high fat diet-induced nonalcoholic fatty liver disease. J. Agric. and Food Chemistry, 2016; 64(10): 2062 – 2071.
Google Scholar
39
-
Masuda Y, Ikuzaki H, Hisamoto M, Nakatani N. Antioxidant properties of gingerol related compounds from ginger. Biofactors, 2004; 21(1–4): 293–296.
Google Scholar
40
-
Liu N, Huo GC, Zhang L. Effects of ginger on lipid peroxidation in hyperlipidemia rats. Health Research, 2003; 32(1): 22 – 23.
Google Scholar
41
-
Zhang XH, Liu HX. Research progress of gingerol. J. Guangxi Normal University, 2009; 26 (1): 110 – 113.
Google Scholar
42
-
Kim EC, Min JK, Kim TY. [6]-Gingerol, a pungent ingredient of ginger, inhibits angiogenesis in vitro and in vivo. Biochemical and Biophysical Research Communications, 2005; 335(2): 300 – 308.
Google Scholar
43
-
Lantz RC, Chen GJ, Sarihan M, Sólyom AM, Jolad SD, Timmermann BN. The effect of extracts from ginger rhizome on vegetation. Phytomedicine,2007; 14(2-3): 123 – 128.
Google Scholar
44
-
Qian HM, Wang M, Su ZX. Preliminary experimental study on anti-tumor effects of ginger extract. Jiangsu Pharmaceutical & Clinical Research, 1999; 7(3): 14 – 16.
Google Scholar
45
-
Xu, J. Research progress on anti-tumor effects of ginger. J. Youjiang Medical College for Nationalities, 2015; 37(3): 496-497.
Google Scholar
46
-
Pietrovski EF, Rosa KA, Facundo VA, Rios K, Marques MCA, Santos ARS. Antinociceptive properties of the ethanolic extract and of the triterpene 3β,6β,16β-trihidroxilup-20(29)-ene obtained from flowers of Combretum leprosum in mice. Pharmacol. Biochem. Behav., 2006; 83: 90 – 99.
Google Scholar
47
-
De Morais-Lima GR, Praxedes IR, De Sales MR, Filho DC, Taveira De Jesus NZ, Batista LM. Bioactivities of the Genus Combretum (Combretaceae): A Review. Molecules, 2012; 17(8): 9142-9206; https://doi.org/10.3390/molecules17089142
Google Scholar
48
-
Atindehou KK, Schmid C, Brun R, Koné MW, Traore D. Antitrypanosomal and antiplasmodial activity of medicinal plants from Côte d’Ivoire. J. Ethnopharmacol., 2004; 90: 221–227.
Google Scholar
49
-
Muthu C, Ayyanar M, Raja N, Ignacimuthu S. Medicinal plants used by traditional healers in Kancheepuram District of Tamil Nadu. India. J. Ethnobiol. Ethnomed., 2006; 2.
Google Scholar
50
-
Gansané A, Sanon S, Ouattara LP, Traoré A, Hutter S, Ollivier E. et al. Antiplasmodial activity and toxicity of crude extracts from alternatives parts of plants widely used for the treatment of malaria in Burkina Faso: Contribution for their preservation. Parasitol. Res., 2010; 106: 335–340.
Google Scholar
51
-
Le Grand A, Wondergem PA. Antiinfective phytotherapy of the savannah forests of Senegal (East Africa) I. An inventory. J. Ethnopharmacol, 1987; 21: 109–125.
Google Scholar
52
-
Le Grand A. Anti-infectious phytotherapy of the tree-savannah, Senegal (Western Africa) III: A review of the phytochemical substances and anti-microbial activity of 43 species. J. Ethnopharmacol., 1989; 25: 315–338.
Google Scholar
53
-
Comley JCW. New macrofilaricidal leads from plants? Trop. Med. Parasitol., 1990; 41: 1–9.
Google Scholar
54
-
Tignokpa M, Laurens A, Mboup S, Sylla O. Popular medicinal plants of the markets of Dakar (Senegal). Int. J. Crude. Drug. Res.,1986; 24: 75–80.
Google Scholar
55
-
Welch C, Zhen J, Bassène E, Raskin I, Simon JE, Wu Q. Bioactive polyphenols in kinkeliba tea (Combretum micrantum) and their glucose-[owering activities. J. Food and Drug Analysis, 2017; 26(2): 487–496.
Google Scholar
56
-
Adoum AO, Dabo NT, Fatope MO. Bioactivities of some savanna plants in the brine shrimp lethality test and in vitro antimicrobial assay. Int. J. Pharmacog., 1997; 35: 334–337.
Google Scholar
57
-
Abreu PM, Martins ES, Kayser O, Bindseil KU, Siems K, Seemann A. et al. Antimicrobial, antitumor and antileischmania screening of medicinal plants from Guinea-Bissau. Phytomedicine, 1999; 6: 187–195.
Google Scholar
58
-
Ferrea G, Canessa A, Sampietro F, Cruciani M, Romussi G, Bassetti D. In vitro activity of a Combretum micranthum extract against Herpes simplex virus types 1 and 2. Antiviral Res., 1993; 21: 317–325.
Google Scholar
59
-
Benoit F, Valentin A, Pelissier Y, Diafouka F, Marion C, Kone-Bamba D. et al. In vitro antimalarial activity of vegetal extracts used in west african traditional medicine. Am. J. Trop. Med. Hyg. 1996; 54: 67–71.
Google Scholar
60
-
Karou D, Dicko MH., Sano S, Simpore J, Traore AS. Antimalarial activity of Sida acuta Burm. F. (Malvaceae) and Pterocarpus erinaceus Poir. (Fabaceae). J. Ethnopharmacol, 2003; 89: 291–294.
Google Scholar
61
-
Ancolio C, Azas N, Mahiou V, Ollivier E, di Giorgio C, Keita A. et al. Antimalarial activity of extracts and alkaloids isolated from six plants used in traditional medicine in Mali and Sao Tome. Phytother. Res. 2002; 16: 466–469.
Google Scholar
62
-
Fyhrquist P, Mwasumbi L, Vuorela P, Vuorela H, Hiltunen R, Murphy C. et al. Preliminary antiproliferative effects of some species of Terminalia, Combretum and Pteleopsis collected in Tanzania on some human cancer cell lines. Fitoterapia, 2006; 77: 358–366.
Google Scholar
63
-
Rogers CB, Verotta L. Chemistry and Biological Properties of the African Combretaceae. In Chemistry, Biological and Pharmacological Properties of African Medicinal Plants; Hostettman, K, 1996.
Google Scholar
64
-
Bisoli E, Garcez WS, Hamerski L, Tieppo C, Garcez FR. Bioactive pentacyclic triterpenes from the stems of Combretum laxum. Molecules, 2008; 13: 2717–2728.
Google Scholar
65
-
Banskota AH, Tezuka Y, Kim QT, Tanaka K, Saiki L, Kadota S. Thirteen novel cycloartane-type triterpenes from Combretum quadrangulare. J. Nat. Prod., 2000; 63: 57–64.
Google Scholar
66
-
Martini ND, Katerere DRP, Eloff JN. Biological Activity of Five Antibacterial Flavonoids From Combretum erythrophyllum (Combretaceae). J. Ethnopharmacol. 2004; 93: 207–212.
Google Scholar
67
-
Aderogba MA, Kgatle DT, McGaw LJ, Eloff JN. Isolation of antioxidant constituents from Combretum apiculatum subsp. apiculatum. South Afr. J. Bot., 2012; 79: 125–131.
Google Scholar
68
-
Chaabi M, Benayache S, Benayache F, N’Gom S, Koné M, Anton R. et al. Triterpenes and polyphenols from Anogeissus leiocarpus (Combretaceae). Biochem. Systemat. Ecol., 2008; 36: 59–62.
Google Scholar
69
-
Welch CR. Chemistry and Pharmacology of Kinkeliba (Combretum micranthum), a West African Medicinal Plant. Rutgers, The State University of New Jersey-New Brunswick, 2010.
Google Scholar
70
-
Eloff J, Katerere D, Mcgaw L. The biological activity and chemistry of the southern African Combretaceae, J. Ethnopharmacol. 2008; 119 (3), 686-699.
Google Scholar
71
-
Chinsembu KC. Plants as antimalarial agents in Sub-Saharan Africa. Acta Trop., 2015; 152: 32 – 48.
Google Scholar
72
-
Diarra N, Van’t Klooster C, Togola A, Diallo D, Willcox M, De Jong, J. Ethnobotanical study of plants used against malaria in Selingue subdistrict, Mali. J. Ethnopharmacol, 2015; 166: 352–360.
Google Scholar
73
-
Esimone C, Grunwald T, Wildner O, Nchinda O, Tippler B, Proksch P. et al. In vitro Pharmacodynamic Evaluation of Antiviral Medicinal Plants Using a Vector-Based Assay Technique. J. Appl. Microbiol. 2005; 99 (6): 1346–1355.
Google Scholar
74
-
Chinsembu KC, Hedimbi, M. An ethnobotanical survey of plants used to manage HIV/AIDS opportunistic infections in Katima Mulilo, Caprivi region, Namibia, J. Ethnobiol. Ethnomed. 2010; 6 (1): 1–9.
Google Scholar
75
-
Ndhlala A, Amoo S, Ncube B, Moyo M, Nair J, Van Staden J. 16-Antibacterial, Antifungal, and Antiviral Activities of African Medicinal Plants, Medicinal Plant Research in Africa, Elsevier, Oxford, 2013, pp. 621–659.
Google Scholar
76
-
Olajide OA, Makinde JM, Okpako DT. Evaluation of the antiinflammatory property of the extract of Combretum micranthum G. Don (Combretaceae). Inflammopharmacology, 2003; 11(3): 293–298.
Google Scholar
77
-
Karou D, Dicko MH, Simpore J, Traore AS. Antioxidant and antibacterial activities of polyphenols from ethnomedicinal plants of Burkina Faso. Afr. J. Biotech., 2005; 4(8), 823-828.
Google Scholar
78
-
Beda M, Besson V, Beourou S, Kouassi K. Optimization of water-extract of phenolic and antioxidant compounds from kinkeliba (Combretum micranthum) leaves. Afr. J. Food Sci. Res., 2014; 2 (1): 37–43.
Google Scholar
79
-
Osonwa UE, Umeyor CE, Okon UV, Uronnachi EM, Nwakile CD. Stability studies on the aqueous extract of the fresh leaves of Combretum micranthum G. Don used as antibacterial agent. J. Chem. Chem. Eng., 2012; 6 (5): 417–424.
Google Scholar
80
-
Banfi S, Caruso E, Orlandi V, Barbieri P, Cavallari S, Vigano P. et al. Antibacterial activity of leaf extracts from Combretum micranthum and Guiera senegalensis (Combretaceae). Res. J. Microbiol., 2014; 9(2): 66–88.
Google Scholar
81
-
Ibrahim JA, Muazzam I, Jegede I, Kunle O, Okogun, J. Ethno-medicinal plants and methods used by Gwandara tribe of Sabo Wuse in Niger state, Nigeria, to treat mental illness, Afr. J. Trad. Complement. Altern. Med., 2007; 4 (2): 211–218.
Google Scholar
82
-
Kantati YT, Kodjo KM, Dogbeavou KS, Vaudry D, Leprince J, Gbeassor M. Ethnopharmacological survey of plant species used in folk medicine against central nervous system disorders in Togo. J. Ethnopharma-col., 2016; 181: 214–220.
Google Scholar
83
-
Toure A, Xu X, Michel T, Bangoura M. In vitro antioxidant and radical scavenging of Guinean kinkeliba leaf (Combretum micranthum G. Don) extracts, Nat. Prod. Res., 2011; 25(11): 1025-1036.
Google Scholar
84
-
El -Sayed KA. Natural products as antiviral agents. Stud. Nat. Prod. Chem., 2000; 24: 473 – 572.
Google Scholar
85
-
Chika A, Bello SO. Antihyperglycaemic activity of aqueous leaf extract of Combretum micranthum (Combretaceae) in normal and alloxan-induced diabetic rats, J. Ethnopharmacol., 2010; 129(1): 34–37.
Google Scholar
86
-
Balde A, Traore M, Balde M, Barry M, Diallo A, Camara M. et al. Ethnomedical and ethnobotanical investigations on the response capacities of Guinean traditional health practioners in the management of outbreaks of infectious diseases: the case of the Ebola virus epidemic, J. Ethnopharmacol., 2016; 182: 137-149.
Google Scholar
87
-
Rao MU, Sreenivasulu M, Chengaiah B, Reddy KJ, Chetty CM. Herbal medicines for diabetes mellitus: A review. Int. J. Pharm.Tech. Res., 2010; 2(3): 1883–1892.
Google Scholar
88
-
Pare D, Hilou A, Ouedraogo N, Guenne S. Ethnobotanical study of medicinal plants used as anti-obesity remedies in the nomad and hunter communities of Burkina Faso. Medicines, 2016; 3(2): 1-24.
Google Scholar
89
-
Seck SM, Doupa D, Dia DG, Diop EA, Ardiet DL, Nogueira RC. et al. Clinical efficacy of African traditional medicines in hypertension: a randomized controlled trial with Combretum micranthum and Hibiscus sabdariffa, J. Hum. Hypertens. 2017; 1–7.
Google Scholar
90
-
Ibrahim MA, Mohammed A, Isah MB, Aliyu AB. Anti-trypanosomal activity of African medicinal plants: a review update. J. Ethnopharmacol., 2014; 154(1): 26–54.
Google Scholar
91
-
Mabozou K, Kwashie EG, Veeresh PV, Thimmaiah NV, Kossi M, Kodjo A. Antioxidant and nephroprotection activities of Combretum micranthum: A phytochemical, in-vitro and ex-vivo studies. Heliyon: Science That Inspires (Elsevier), 2019; 5(3): 01365.
Google Scholar
92
-
Adesina SK, Gbile ZO, Odukoya OA. Survey of indigenous plants of West Africa with special emphasis on medicinal plants and issues associated with management. The United Nations Programme on Natural Resources in Africa, 1995.
Google Scholar
93
-
Ofor MO, Ngobili CA, Nwufo MI. Ethno-botanical uses and trade characteristics of Garcinia kola in Imo State, Nigeria. Int. J. Agric. Rural Dev., 2004; 5: 140–144.
Google Scholar
94
-
Okoye TC, Uzor PF, Onyeto CA, Okereke EK. Safe African medicinal plants for clinical studies. Toxicol. Survey African Med. Plants, 2014; 18: 2–15. doi: 10.1016/B978-0-12-800018-2.00018-2.
Google Scholar
95
-
Ibiblio JO. Some Medicinal Plants of Nigeria. Ibadan Publishers Nig. Ltd., Nigeria, 1983.
Google Scholar
96
-
Iwu MM. Food for Medicine. In: Dietary Plants and Masticatories as Sources of Biologically Active Substances, Iwu, M.M. (Ed.), University of Ife Press, Nigeria. Kutzler, M.A., 1989.
Google Scholar
97
-
Adegboye M F, Akinpelu DA, Okoh AI. The bioactive and phytochemical properties of Garcinia kola (heckle) seed extract on some pathogens. African J. Biotechnol., 2008; 7: 3934–3938.
Google Scholar
98
-
Duncan AR, Okunji CO. New Antimicrobials of Plant Origin. ASHS Press, Alexandria, VA, 1999, pp. 457–462.
Google Scholar
99
-
Farombi EO, Adedara IA, Oyenihi AB, Ekakitie E, Kehinde S. Hepatic, Testicular and Spermatozoa Antioxidant Status in Rats Chronically Treated with Garcinia Kola Seed. J. Ethnopharmacology, 2013; 146(2), 536–542. doi: 10.1016/j.jep.2013.01.018.
Google Scholar
100
-
Sewani-Rusike CR, Ralebona N, Nkeh-Chuangag BN. Dose- and time-dependent effects of Garcinia kola seed extract on sexual behaviour and reproductive parameters in male Wistar rats. National Center for Biotechnology Information, 2016; 48(3), 300–307. doi: 10.1111/and.12447.
Google Scholar
101
-
Aprioku JS, Nwachukwu V, Okeke BU, Okubuike O, Igbo RO, Emakpo JO. The Influence of Garcinia kola Seed on Sexual Behavior and Testis Physiology in Wistar Rats. American Journal of Pharmacology and Toxicology, 2018; 13(7.15): 1–9. doi: 10.3844/ajptsp.2018.7.15.
Google Scholar
102
-
Eleyinmi AF, Bressler DC, Amoo IA, Sporns P, Oshodi AA. Chemical Composition of Bitter Cola (Garcinia Kola) Seed and Hulls. Pol. J. Food Nutr. Sci., 2006; 56(4): 395–400.
Google Scholar
103
-
Etonihu AC, Adam H, Nweze, N. O. Chemical Analysis of Some Nigerian Species of Cola nitida, Cola acuminata and Garcinia cola. Proceedings of the 36th Annual International Conference of Chem. Soc. Nig., 16th – 20th September, pp. 313–317, NIGER 2013.
Google Scholar
104
-
James DB, Abu EA, Wurochekk AU, Orji GN. Phytochemical and antimicrobial investigations of aqueous and methanolic extracts of Ximenia americana. Journal of Medical Science, 2007; 7(2): 284-288.
Google Scholar
105
-
Naveen PR, Viswanathan S, Renuka DV, Jayashree N, Sweth VC, Archana R. et al. Preliminary phytochemical screening and antimicrobial activity of Samanea saman. J. Medicinal Plant Research, 2008; 2(10): 268–270.
Google Scholar
106
-
Osadebe PO, Ukwueze SE. A comparative study of the phytochemical and antimicrobial properties of the eastern Nigerian species of African Mistletoe (Loranthus micranthus) sourced from different host area trees. Journal of Biological Resources and Biotechnology, 2004; 2(1): 18–23.
Google Scholar
107
-
Morton JF. Atlas of medicinal plants of middle America, Vol. II. Charles C. Thomas, publisher, Springfield, Illinois, USA, 1981, pp. 932-933.
Google Scholar
108
-
Etonihu AC. Potentials of Some Nigerian Plant Resources: The Chemistry Perspective. (ISBN 978-620-3-20047-8). Lambert Academic Pub., Germany, 2021, p.8.
Google Scholar
109
-
Al-Rowaily SL, Abd-ElGawad AM, Assaeed AM, Elgamal AM, Gendy AE, Mohamed TA. Essential oil of Calotropis procera: comparative chemical profiles, antimicrobial activity, and allelopathic potential on weeds. Molecules ,2020; 25: 5203.
Google Scholar
110
-
Kaur A, Batish DA, Kaur S, Chauhan BS. An Overview of the Characteristics and Potential of Calotropis procera From Botanical, Ecological, and Economic Perspectives. Frontier Plant Sci., 2021; 12: 690806.
Google Scholar
111
-
Pattnaik PK, Kar D, Chhatoi H, Shahbazi S, Ghosh G, Kuanar A. Chemometric profile & antimicrobial activities of leaf extract of Calotropis procera and Calotropis gigantea. Nat. Prod. Res., 2017; 31: 1954 –1957.
Google Scholar
112
-
Mehmood T, Arshad H, Nawaz S, Ullah A, Hafeez A, Anwar F. Pharmaceutical potential and phenolics profiling of leaves and bark of Calotropis procera in relation to extraction solvents. Pharm. Chem. J., 2020; 54: 631–641.
Google Scholar
113
-
Kinda PT, Nacoulma AP, Guenné S, Compaoré M, Djandé A, Lagnika L. The metabolomic study of Calotropis procera Ait. from Burkina Faso based on chemical functional groups profiling using FTIR. J. Complement. Integr. Med, 2020; 17: 20190134.
Google Scholar
114
-
Das RK, Sharma P, Nahar P, Bora U. Synthesis of gold nanoparticles using aqueous extract of Calotropis procera latex. Mater. Lett., 2011; 65: 610–613. 10.1016/j.matlet.2010.11.040
Google Scholar
115
-
Freitas CDT, Silva RO, Ramos MV, Porfírio CTMN, Farias DF, Sousa JS. Identification, characterization, and antifungal activity of cysteine peptidases from Calotropis procera latex. Phytochemistry, 2020; 169: 112163.
Google Scholar
116
-
Mossa, JS, Tariq M, Mohsin A, Ageel AM, Al-Yahya MA, Al-Said MS. Pharmacological studies on aerial parts of Calotropis procera. Am. J. Chinese Med., 1991; 19: 223–231.
Google Scholar
117
-
Hagaggi NSA, Mohamed AAA. Plant–bacterial endophyte secondary metabolite matching: a case study. Arch. Microbiol., 2020; 202: 2679–2687.
Google Scholar
118
-
Garabadu D, Srivastava N, Murti Y. Calotropis procera attenuates chronic unpredictable mild stress-induced depression in experimental animals. Metab. Brain Dis., 2019; 34: 1635–1647.
Google Scholar
119
-
Nadeem M, Mumtaz MW, Danish M, Rashid U, Mukhtar H, Anwar F. Calotropis procera: UHPLC-QTOF-MS/MS based profiling of bioactives, antioxidant and anti-diabetic potential of leaf extracts and an insight into molecular docking. J. Food Meas. Charact., 2019; 13: 3206–3220.
Google Scholar
120
-
Tour N, Talele G. Anti-inflammatory and gastromucosal protective effects of Calotropis procera (Asclepiadaceae) stem bark. J. Nat. Med., 2011; 65: 598–605.
Google Scholar
121
-
Ibrahim SRM, Mohamed GA, Shaala LA, Banuls LMY, Kiss R, Youssef DTA. Calotroposides H–N, new cytotoxic oxypregnane oligoglycosides from the root bark of Calotropis procera. Steroids, 2015; 96: 63–72.
Google Scholar
122
-
Zafar S, Anwar H, Qasim M, Irfan S, Maqbool J, Sajid, F. Calotropis procera (root) escalates functions rehabilitation and attenuates oxidative stress in a mouse model of peripheral nerve injury. Pak. J. Pharm. Sci., 2020; 33: 2801–2807.
Google Scholar
123