Molecular Docking Studies and Microbial Activities of Mono-, Di- and Tri-Substituted Simple Coumarins
##plugins.themes.bootstrap3.article.main##
In this study, thirteen simple coumarin derivatives were evaluated for antibacterial and antifungal activities. The test results showed that the coumarin derivatives used, especially the 8, 11, 12 and 13 derivatives, were more susceptible to gram positive bacteria. Furthermore, the antifungal activity of compound 11 was observed to be promising. Insertion analyzes were applied to elucidate the interaction mechanisms between coumarin compounds and target proteins (selected from S. aureus and C. albicans). Compound 11 exhibited high binding affinity for CYP51 (-7.32 kcal/mol) and strong protein-ligand molecular interactions. As a result, it is stated that 11 is open to various chemical modifications and has a good initial skeletal molecular structure for antifungal compound designs.
References
-
Carneiro A, Matos MJ, Uriarte E, Santana L. Trending Topics on Coumarin and Its Derivatives in 2020. Molecules. 2021; 26(2): 501-515. doi: 10.3390/molecules26020501.
Google Scholar
1
-
Sakinah N, Jumal J. Synthesis, Characterization, and Applications of Coumarin Derivatives: A Short Review. MJoSHT. 2021; 7(1): 62-69.
Google Scholar
2
-
Mamidala S, Peddi SR, Aravilli RK, Jilloju PC, Manga V, Vedula RR. Microwave irradiated one pot, three component synthesis of a new series of hybrid coumarin based thiazoles: Antibacterial evaluation and molecular docking studies. J Mol Struct. 2021; 1225: 129114-129128. doi: 10.1016/j.molstruc.2020.129114.
Google Scholar
3
-
Arshad A, Osman H, Bagley MC, Lam CK, Mohamad S, Zahariluddin ASM. Synthesis and antimicrobial properties of some new thiazolyl coumarin derivatives. Eur J. Med Chem. 2011; 46(9): 378 8-3794. doi: 10.1016/j.ejmech.2011.05.044.
Google Scholar
4
-
Chen WC, Liu L, Shen YF, Hu Y, Ling F, Wang GX, et al. A new coumarin derivative plays a role in rhabdoviral clearance by interfering glycoprotein function during the early stage of viral infection Cell Signal. 2018; 51: 199-210. doi: 10.1016/j.cellsig.2018.08.007.
Google Scholar
5
-
Karatas MO, Olgundeniz B, Gunal S, Ozdemir I, Alici B, Cetinkaya E. Synthesis, characterization and antimicrobial activities of novel silver(I) complexes with coumarin substituted N-heterocyclic carbene ligands. Bioorganic Med. Chem. 2016; 24(4): 643-650. doi: 10.1016/j.bmc.2015.12.032.
Google Scholar
6
-
Patel AA, Lad HB, Pandya KR, Patel , CV, Brahmbhatt DI. Synthesis of a new series of 2-(2-oxo-2H-chromen-3-yl)-5H-chromeno[4,3-b]pyridine-5-ones by two facile methods and evaluation of their antimicrobial activity. Med Chem Res. 2013; 22, 4745-4754. doi: 10.1007/s00044-013-0489-4.
Google Scholar
7
-
Dawane BS, Konda SG, Bodade RG, Bhosale RB. An efficient one-pot synthesis of some new 2,4-diaryl pyrido[3,2-c]coumarins as potent antimicrobial agents. J Heterocycl Chem. 2010; 47(1): 237-241. doi: 10.1002/jhet.234.
Google Scholar
8
-
Al-Haiza MA, Mostafa MS, El-Kady , MY. Synthesis and Biological Evaluation of Some New Coumarin Derivatives. Molecules. 2003; 8(2): 275-286. doi: 10.3390/80200275.
Google Scholar
9
-
Li YF, Wang GF, He PL, Huang WG, Zhu FH, Gao HY, et al. Synthesis and anti-hepatitis B virus activity of novel benzimidazole derivatives. J Med Chem. 2006; 49(15), 4790-4794. doi: 10.1021/jm060330f.
Google Scholar
10
-
Sabry NM, Mohamed HM, Khattab ESAEH, Motlaq SS, El-Agrody AM. Synthesis of 4H-chromene, coumarin, 12H-chromeno[2,3-d]pyrimidine derivatives and some of their antimicrobial and cytotoxicity activities. Eur J Med Chem. 2011; 46(2): 765-772. doi: 10.1016/j.ejmech.2010.12.015.
Google Scholar
11
-
Ghashang M, Mansoor SS, Aswin K. Pentafluorophenylammonium triflate (PFPAT) catalyzed facile construction of substituted chromeno[2,3-d]pyrimidinone derivatives and their antimicrobial activity. J Adv Res. 2014; 5(2): 209-218. doi: 10.1016/j.jare.2013.03.003.
Google Scholar
12
-
Ajani OO, Obafemi CA, Nwinyi OC, Akinpelu DA. Microwave assisted synthesis and antimicrobial activity of 2-quinoxalinone-3-hydrazone derivatives. Bioorgan Med Chem. 2010; 18(1): 214-221. doi: 10.1016/j.bmc.2009.10.064.
Google Scholar
13
-
Yernale NG, Bennikallu M, Mathada H. Preparation of Octahedral Cu(II), Co(II), Ni(II) and Zn(II) Complexes Derived from 8-Formyl-7-Hydroxy-4-Methylcoumarin: Synthesis, Characterization and Biological Study. J Mol Struct. 2020; 1220: 128659-128666. doi: 10.1016/j.molstruc.2020.128659.
Google Scholar
14
-
Patil SA, Unki SN, Kulkarni AD, Naik VH, Badami PS. Syn-thesis, characterization, in vitro antimicrobial and DNA cleavagestudies of Co(II), Ni(II) and Cu(II) complexes with ONOO donor coumarin Schiff bases. J Mol Struct. 2011; 985: 330-338. doi:10.1016/j.molstruc.2010.11.016.
Google Scholar
15
-
KS. Patel, JC. Patel, HR. Dholariya, KD. Patel, Spectrochim Acta - Part A Mol Biomol Spectrosc, 96, 468, (2012).
Google Scholar
16
-
Sahoo J, Paidesetty SK. Antimicrobial activity of novel synthesized coumarin based transitional metal complexes. J Taibah Univ Med Sci. 2017; 12(2): 115-124. doi: 10.1016/j.jtumed.2016.10.004.
Google Scholar
17
-
Vukovic N, Sukdolak S, Solujic S, Niciforovic N. Substituted imino and amino derivatives of 4-hydroxycoumarins as novel antioxidant, antibacterial and antifungal agents: Synthesis and in vitro assessments. Food Chem. 2010; 120(4): 1011-1018. doi: 10.1016/j.foodchem.2009.11.040.
Google Scholar
18
-
Trykowska Konc J. Hejchman E, Kruszewska H, Wolska I, Maciejewska D. Synthesis and pharmacological activity of O-aminoalkyl derivatives of 7-hydroxycoumarin. Eur J Med Chem. 2011; 46(6): 2252-2263. doi: 10.1016/j.ejmech.2011.03.006.
Google Scholar
19
-
Revankar HM, Kulkarni MV, Joshi SD, More UA. Synthesis, biological evaluation and docking studies of 4-aryloxymethyl coumarins derived from substructures and degradation products of vancomycin. Eur J Med Chem. 2013; 70: 750-757. doi: 10.1016/j.ejmech.2013.10.047.
Google Scholar
20
-
Li MK, Li J, Liu BH, Zhou Y, Li X, Xue XY, et al. Synthesis, crystal structures, and anti-drug-resistant Staphylococcus aureus activities of novel 4-hydroxycoumarin derivatives. Eur J Pharmacol. 2013; 721(1-3): 151-157. doi: 10.1016/j.ejphar.2013.09.040.
Google Scholar
21
-
Çelik Onar H, Yaşa H, Sin O. Comparison of Antioxidant Activities of Mono-, Di- and Tri-substituted Coumarins. JOTCSA. 2020; 7(1): 87-96. doi: 10.18596/jotcsa.624265.
Google Scholar
22
-
Clinical and Laboratory Standards Institute (CLSI), Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard–Second Edition, in, Wayne, PA, USA, 1997.
Google Scholar
23
-
Clinical and Laboratory Standards Institute (CLSI), Performance Standards for Antimicrobial Susceptibility Testing, in, Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA, 2020.
Google Scholar
24
-
Molecular Operating Environment (MOE), 2019.01; Chemical Computing Group ULC, 1010 Sherbrooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2019.
Google Scholar
25
-
MarvinSketch: Marvin 16.12.12, ChemAxon, 2016.
Google Scholar
26
-
Halgren TA. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comp Chem. 1996; 17(5-6): 490-519. doi: 10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P.
Google Scholar
27
-
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000; 28(1): 235-242. doi: 10.1093/nar/28.1.235.
Google Scholar
28
-
Bax B, Chan P, Eggleston D. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature. 2010; 466: 935-940. doi: 10.1038/nature09197.
Google Scholar
29
-
Caldwell SJ, Berghuis AM. Plasticity of Aminoglycoside Binding to Antibiotic Kinase APH(2″)-Ia. Antimicrob Agents Chemother. 2018; 62(7): e00202-e00218. doi: 10.1128/AAC.00202-18.
Google Scholar
30
-
Hargrove TY, Friggeri L, Wawrzak Z, Qi A, Hoekstra WJ, Schotzinger RJ, et al. Structural analyses of Candida albicans sterol 14α-demethylase complexed with azole drugs address the molecular basis of azole-mediated inhibition of fungal sterol biosynthesis. J Biol Chem. 2017; 292(16): 6728-6743. doi: 10.1074/jbc.M117.778308.
Google Scholar
31
-
Kondo J, François B, Russell RJM, Murray JB, Westhof E. Crystal structure of the bacterial ribosomal decoding site complexed with amikacin containing the gamma-amino-alpha-hydroxybutyryl (haba) group. Biochimie. 2006; 88(8): 1027-1031. doi: 10.1016/j.biochi.2006.05.017.
Google Scholar
32
-
Labute P. Protonate3D: assignment of ionization states and hydrogen coordinates to macromolecular structures. Proteins. 2009; 75(1): 187-205. doi: 10.1002/prot.22234.
Google Scholar
33
-
Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, et al. Reference Manual. AMBER 12. University of California, San Francisco, 2012.
Google Scholar
34
-
Edelsbrunner EP. Three-Dimensional Alpha Shapes. ACM Trans Graph. 1994; 13: 43-72.
Google Scholar
35
Most read articles by the same author(s)
-
Zuhal Gerçek,
Erol Erçağ,
Handenur Yılmaz,
The One Pot Synthesis and Antioxidant Activity Determination of Novel Molecules , European Journal of Advanced Chemistry Research: Vol. 3 No. 3 (2022)