##plugins.themes.bootstrap3.article.main##

The functional composites of activated carbon black-titanium dioxide (ACB-TiO2) with antibacterial-photocatalytic properties have been properly synthesized in this research using ultrasonic of 40 kHz, 2´50 W at 50oC for 10, 20, and 30 minutes agitation time. This research aimed to enhance titanium dioxide's antibacterial and photocatalytic properties (TiO2) using activated carbon black (ACB) particles forming ACB-TiO2 composites. The antibacterial properties of the materials were evaluated based on their capability of inhibiting Escherichia coli (gram-negative) and Staphylococcus aureus (gram-positive) bacteria cells growth, while the photocatalytic properties of them were evaluated based on their capability of degrading methyl orange dye molecules under ultraviolet (UV) light exposure. It is conclusively known that the ACB-TiO2 composites can be synthesized from the activated carbon black (ACB) and titanium dioxide (TiO2) of about 164 nm and 547 nm in their particle size respectively employed ultrasonic agitations for the various time. All of the produced ACB-TiO2 composites could inhibit the bacterial cell growth and also could decompose the methyl orange molecules with the best was that synthesized using 30 minutes ultrasonic agitation time.

References

  1. Smith WF, Hashemi J. Foundations of Materials Science and Engineering. (4th.Ed.). McGraw Hill International Edition Singapore; 2006.
     Google Scholar
  2. Osman AF, Alakrach AM, Kalo H, Azmi WNW, Hashim F. In vitro biostability and biocompatibility of Ethyl vinyl acetate (EVA) nanocomposites for biomedical applications. RSC Advances 2015; 5: 31485-31495. doi: 10.1039/C4RA15116J.
     Google Scholar
  3. Chen B, Meng Y, Sha J, Zhong C, Hu W, Zhao N. Preparation of MoS2/TiO2 based nanocomposites for Photocatalysis and Rechargeable batteries: Progress, Challenges, and Perspective. Nanoscale 2018; 10: 34-68. doi:10.1039/C7NR07366F.
     Google Scholar
  4. Jagadish K, Chandrashekar BN, Byrappa K, Rangappa KS, Srikantaswammy S. Simultaneous removal of dye and heavy metals in a single step reaction using PVA/MWCNT composite. Anal.Methods 2016; 8: 2408-2412. doi: 10.1039/c6ay00229c.
     Google Scholar
  5. Mammadov G, Ramazanov MA, Kanaev A, Hasanova UA, Huseynov KA. Photocatalytic degradation of organic pollutants in air by application of Titanium dioxide nanoparticles. CET, 2017; 60: 241-246. doi: 10.3303/CET1760041.
     Google Scholar
  6. Abdennouri M, Baalala M, Galadi A, El Makhfouk M, Bensitel M, Nohair K, Sadiq M, Boussaound A, Barka N. Photocatalytic degradation of pesticides by Titanium dioxide and Titanium pillared purified clays. Arab. J. Chem. 2016; 9: S313-S318. doi: 10.1016/j.arabjc.2011.04.005.
     Google Scholar
  7. Mahlambi MM, Ngila CJ, Mamba BB. Recent developments in environmental photocatalytic degradation of organic pollutants: The case of Titanium dioxide nanoparticles-A Review. J. Nanomater. 2015:1-30. doi: 10.1155/2015/790173.
     Google Scholar
  8. Kabra K, Chaudhary R, Sawhney RL. Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: A Review. Ind. Eng. Chem. Res. 2004; 43(24):7683-7696. doi: 10.1021/ie0498551.
     Google Scholar
  9. Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Environmental applications of semiconductor photocatalysis. Chem. Rev.1995; 95(1): 69-96. doi: 10.1021/cr00033a004.
     Google Scholar
  10. Atefyekta S, Ercan B, Karlsson J, Taylor E, Chung S, Webster T, Andersson M. Antimicrobial performance of mesoporous titania thin films: role of pore size, hydrophobicity, and antibiotic release. Int. J. Med. 2016; 11: 977-990. doi: 10.2147/IJN.S95375.
     Google Scholar
  11. Sujata SA, Jack NA. Titanium dioxide nanoparticle as an environmental sanitazing agent. JMBT 2015; 7(2): 061-064. doi: 10.4172/1948-5948.1000183.
     Google Scholar
  12. Petica A, Florea A, Gaidau C, Balan D, Anicai L. Synthesis and characterization of silver-titania nanocomposites prepared by electrochemical method with enhanced photocatalytic characteristics, antifungal and antimicrobial activity. J. Mater. Res. Technol. 2019; 8(1): 41-53. doi: 10.1016/j.jmrt.2017.09.009.
     Google Scholar
  13. Zimbone M, Buccheri MA, Cacciato G, Sanz R, Rappazzo G, Boninelli S, Reitano R, Romano L, Privitera V, Grimaldi MG. Photocatalytic and antibacterial activity of TiO2 nanoparticles obtained by laser ablation in water. Appl. Catal. B 2015; 165: 487-494. doi: 10.1016/j.apcatb.2014.10.031.
     Google Scholar
  14. Kubacka A, Diez MS, Rojo D, Bergiela R, Ciordia S, Zapico I, Albar JP, Barbas C. Martin dos Santos VAP, Garcia MF, Ferrer M. Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Sci. Rep. 2014; 4: 4134. doi: 10.1038/srep04134.
     Google Scholar
  15. Yadav HM, Otari SV, Bohara RA, Mali SS, Pawar SH, Delekar SD. Synthesible light photocatalytic antibacterial activity of nickel-doped TiO2 nanoparticles against Gram-positive and Gram-negative bacteria. JPPA 2014; 294: 130-136. doi: 10.1016/j.jphotochem.2014.07.024.
     Google Scholar
  16. Chakra CS, Rajendar V, Rao KV, Kumar M. Enhanced antimicrobial and anticancer properties of ZnO and TiO2 nanocomposites. 3Biotech 2017; 7 (89): doi: 10.1007/s13205-017-0731-8.
     Google Scholar
  17. Santosh SM, Kandasamy N. Antibiofilm activity of epoxy/Ag-TiO2 polymer nanocomposite coatings against Staphylococcus Aureus and Escherichia Coli. Coatings 2015; 5:95-114. doi: 10.3390/coatings5020295.
     Google Scholar
  18. Bonilla AM, Cerrada ML, Garcia MF, Kubacka A, Ferrer M, Garcia Mc.F. Biodegradable polycaprolactone-titania nanocomposite: preparation, characterization and antimicrobial properties. Int. J. Mol. Sci. 2013; 14: 9249-9266. doi: 10.3390/ijms14059249.
     Google Scholar
  19. Desai V, Naik B, Ghosh NN, Kowshik M. Functionalization of AgCl/TiO2 nanocomposite with folic acid: a promising strategy for enhancement of antimicrobial activity. Sci. Adv. Mater. 2013; 5(5): 431-439. doi: 10.1166/sam.2013.1472.
     Google Scholar
  20. Fu X, Clark LA, Yang Q, Anderson MA. Enhanced photocatalytic performance of Titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2. Environ. Sci. Technol. 1996; 30(2): 647-653. doi: 10.1021/es950391v.
     Google Scholar
  21. Njoku VO, Islam, MdA, Asif M, Hameed BH. Adsorption of 2,4-dichloro phenoxy acetic acid by mesoporous activated carbon prepared from H3PO4-activated langsat empty fruit bunch. J. Environ. Manage. 2015; 154(15):138-144. doi: 10.1016/j.jenvman.2015.02.002.
     Google Scholar
  22. Ganapathi RK, Ashok CH, Venkateswara RK, Shilpa C, Tambur P. Green synthesis of TiO2 nanoparticles using Aloe vera extract. IJARPS 2016; 2(1A):28–34. URL: www.arcjournals.com.
     Google Scholar
  23. Mega F. Green Synthesis and Characterization of The Functional Nanocomposite of Activated Carbon-Titanium Dioxide: The study of the effect of time toward the Antibacterial Activity and Photocatalytic Properties), Undergraduate Final Project (S1 Scription), Diponegoro University 2017.
     Google Scholar
  24. López A, Tangil MSD, Orellana OV, Ramírez AS, Rico M. Phenolic constituents, antioxidant and preliminary antimycoplasmic activities of leaf skin and flowers of Aloe vera L. Burm. f. (syn. A. barbadensis Mill.) from the Canary Islands (Spain). Molecules 2013; 18(5): 4942–4954. doi: 10.3390/molecules18054942.
     Google Scholar
  25. Wang TH, Lópe AMN, Li S, Dixon DA. Hydrolysis of TiCl4: Initial steps in the production of TiO2. J. Phys. Chem. A. 2010; 114(28): 7561-7570. DOI: 10.1021/jp102010h.
     Google Scholar
  26. Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 2013; 31(2):346–356. doi: 10.1016/ j.biotechadv.2013.01.003.
     Google Scholar
  27. Maurya A, Chauhan P, Mishra A, Pandey AK. Surface functionalization of TiO2 with plant extracts and their combined antimicrobial activities against E. faecalis and E. Coli. J. Res. Updates Polym. Sci. 2012; 1(12):43–51. doi: 10.6000/1929-5995.2012.01.01.6.
     Google Scholar
  28. Bracamonte MV, Lacconi GI, Urreta SE, Torres LEFF. On the nature of defects in liquid-phase exfoliated graphene. ACS J. Phys. Chem. 2014; 1(6):1–4. doi: 10.1021/jp051930a.
     Google Scholar