##plugins.themes.bootstrap3.article.main##

The removal and use of sericin could have a strong economic, social, and environmental impact, particularly in countries where sericulture is practiced, especially in Bangladesh. Because in our country Bangladesh, sericin is a waste material in the sericulture industry. Several techniques have been adopted for sericin extraction, but maintaining its chemical properties after extraction and environment-friendly extraction methods are still a major challenge. Sericin is fully or partially hydrolyzed and solubilized during the degumming of the cocoon. Consequently, it is important to create sericin extraction procedures that require less energy, don't release any chemicals, and don't harm the environment. Numerous research has been done to extract sericin but the differences in sericin content and chemical properties of Bivoltine and Multivoltine silkworm cocoon have not been studied yet. In this work, sericin was extracted from the silkworm cocoon of four different silkworm races at two different temperatures and durations. Significant differences were observed in yield% with different silkworm races and different treatments. Extracted sericin was characterized through SDS PAGE, FTIR & UV spectroscopy, and TGA.

References

  1. Freddi G, Mossotti R, Innocenti R. Degumming of silk fabric with several proteases. J Biotechnol. 2003;106(1):101-12. doi: 10.1016/j.jbiotec.2003.09.006, PMID 14636714.
     Google Scholar
  2. Zhu LJ, Yao J, Youlu L. Structural transformation of sericin dissolved from cocoon layer in hot water. Zhejiang Nongye da Xue Xuebao, 1998; 24(3): 268–272.
     Google Scholar
  3. Cho KY, Moon JY, Lee YW, Lee KG, Yeo JH, Kweon HY et al.. Preparation of self-assembled silk sericin nanoparticles. Int J Biol Macromol. 2003;32(1-2):36-42. doi: 10.1016/s0141-8130(03)00023-0, PMID 12719130.
     Google Scholar
  4. Aramwit P, Siritientong T, Srichana T. Potential applications of silk sericin, a natural protein from textile industry byproducts. Waste Manag Res. 2012;30(3):217-24. doi: 10.1177/0734242X11404733, PMID 21558082.
     Google Scholar
  5. Padamwar MN, Pawar AP. Silk sericin and its applications: a review. J Sci Ind Res. 2004;63(10):323-9.
     Google Scholar
  6. Genç G, Bayraktar O, BaŞal G. A Research on the production of silk sericin powders by using spray drying method. Tekst. ve Konfeksiyon. 2009 273;14(1):279.
     Google Scholar
  7. Padamwar MN, Pawar AP, Daithankar AV, Mahadik KR. Silk sericin as a moisturizer: an in vivo study. J Cosmet Dermatol. 2005;4(4):250-7. doi: 10.1111/j.1473-2165.2005.00200.x, PMID 17168872.
     Google Scholar
  8. Khire TS, Kundu J, Kundu SC, Yadavalli VK. The fractal self-assembly of the silk protein sericin. Soft Matter. 2010;6(9):2066-71. doi: 10.1039/b924530h.
     Google Scholar
  9. Aramwit P, Damrongsakkul S, Kanokpanont S, Srichana T. Properties and antityrosinase activity of sericin from various extraction methods. Biotechnol Appl Biochem. 2010;55(2):91-8. doi: 10.1042/BA20090186, PMID 20055756.
     Google Scholar
  10. Srinivas N, Kumar R, Merchant N, Subramanya D, Pruthvika D, Jain P, et al. Extraction & characterization of sericin and its immobilization on hydroxylapatite nanoparticles for tissue engineering applications. Int J ChemTech Res. 2015;7(5):2117-24.
     Google Scholar
  11. Zhang YQ. Applications of natural silk protein sericin in biomaterials. Biotechnol Adv. 2002;20(2):91-100. doi: 10.1016/s0734-9750(02)00003-4, PMID 14538058.
     Google Scholar
  12. Kundu SC, Dash BC, Dash R, Kaplan DL. Natural protective glue protein, sericin bioengineered by silkworms: potential for biomedical and biotechnological applications. Prog Polym Sci. 2008;33(10):998-1012. doi: 10.1016/j.progpolymsci.2008.08.002.
     Google Scholar
  13. Kim SJ. Gas permeation through water-swollen sericin/ PVA membranes [masters thesis]. Ontario, Canada: University of Waterloo; 2007.
     Google Scholar
  14. Fabiani C, Pizzichini M, Spadoni M, Zeddita G. Treatment of wastewater from silk degumming processes for protein recovery and water reuse. Desalination. 1996;105(1-2):1-9. doi: 10.1016/0011-9164(96)00050-1.
     Google Scholar
  15. Yun H, Oh H, Kim MK, Kwak HW, Lee JY, Um IC, et al. Extraction conditions of Antheraea mylitta sericin with high yields and minimum molecular weight degradation. Int J Biol Macromol. 2013;52:59-65. doi: 10.1016/j.ijbiomac.2012.09.017, PMID 23026092.
     Google Scholar
  16. Aramwit P, Damrongsakkul S, Kanokpanont S, Srichana T. Properties and anti-tyrosinase activity of sericin from various extraction methods. Biotechnology and Applied Biochemistry, 2010; 55(2): 91–98. https://doi.org/10.1042/BA20090186.
     Google Scholar
  17. Sasaki M, Yamada H, Kato N. Consumption of silk protein, sericin elevates intestinal absorption of zinc, iron, magnesium, and calcium in rats. Nutr Res. 2000; 20(10): 1505-11. doi: 10.1016/S0271-5317(00)80031-7.
     Google Scholar
  18. Ki CS, Park YH, Jin H. Silk protein as a fascinating biomedical polymer: structural fundamentals and applications. Macromol Res. 2009;17(12): 935-42. doi: 10.1007/BF03218639.
     Google Scholar
  19. Gulrajani ML, Sinha S. Studies in degumming of silk with aliphatic amines. Journal of the Society of Dyers and Colourists, 1993; 109(7–8): 256–260. https://doi.org/10.1111/j.1478-4408.1993.tb01571.x.
     Google Scholar
  20. Yang Y, Lee SM, Lee HS, Lee KH. Recovery of Silk Sericin from Soap-Alkaline Degumming Solution. International Journal of Industrial Entomology, 2013; 27(1): 203–208. https://doi.org/10.7852/ijie.2013.27.1.203.
     Google Scholar
  21. Rajkhowa R, Wang L, Kanwar JR, Wang X. Molecular weight and secondary structure change in eri silk during alkali degumming and powdering. J Appl Polym Sci. 2011;119(3):1339-47. doi: 10.1002/app.31981.
     Google Scholar
  22. Gulrajanid ML, Sethi S, Gupta S. Some studies in degumming of silk with organic acids. J Soc Dyers Colour. 1992;108(2):79-86. doi: 10.1111/j.1478-4408.1992.tb01420.x.
     Google Scholar
  23. Gulrajani ML, Sinha S. Studies in degumming of silk with aliphatic amines. J Soc Dyers Colour. 1993;109(7-8):256-60. doi: 10.1111/j.1478-4408.1993.tb01571.x.
     Google Scholar
  24. Subrata, Devi D, Goswami B. Degumming of Muga silk fabric by biosurfactant. Journal of Scientific and Industrial Research, 2012; 71: 270–272.
     Google Scholar
  25. Capar G, Aygun SS, Gecit MR. Treatment of silk production wastewaters by membrane processes for sericin recovery. J Membr Sci. 2008;325(2):920-31. doi: 10.1016/j.memsci.2008.09.020.
     Google Scholar
  26. Castrillon DC, Velez LM, Hincapie GA, Catalina A. Characterization of Colombian Silk Sericin Dehydrated by Spray Drying and Freeze Drying. Advance Journal of Food Science and Technology, 2018; 15(SPL): 5–14. https://doi.org/10.19026/ajfst.14.5866.
     Google Scholar
  27. Gulrajani ML, Purwar R, Prasad RK, Joshi M. Studies on structural and functional properties of sericin recovered from silk degumming liquor by membrane technology. J Appl Polym Sci. 2009;113(5):2796-804. doi: 10.1002/app.29925.
     Google Scholar
  28. Vaithanomsat P, Kitpreechavanich V. Sericin separation from silk degumming wastewater. Sep Purif Technol. 2008;59(2):129-33. doi: 10.1016/j.seppur.2007.05.039.
     Google Scholar
  29. Yamada H, Nakao H, Takasu Y, Tsubouchi K. Preparation of undegraded native molecular fibroin solution from silkworm cocoons. Mater Sci Eng. 2001;14(1-2):41-6. doi: 10.1016/S0928-4931(01)00207-7.
     Google Scholar
  30. Khan MR, Tsukada M, Gotoh Y, Morikawa H, Freddi G, Shiozaki H. Physical properties and dyeability of silk fibers degummed with citric acid. Bioresour Technol. 2010;101(21):8439-45. doi: 10.1016/j.biortech.2010.05.100, PMID 20598526.
     Google Scholar
  31. Takasu Y, Yamada H, Tsubouchi K. Extraction and chromatographic analysis of cocoon sericin of the silkworm, Bombyx mori. J Insect Biotechnol Sericol. 2002;71:151-6.
     Google Scholar
  32. Arami M, Rahimi S, Mivehie L, Mazaheri F, Mahmoodi NM. Degumming of Persian silk with mixed proteolytic enzymes. J Appl Polym Sci. 2007;106(1):267-75. doi: 10.1002/app.26492.
     Google Scholar
  33. Gulrajani ML, Agarwal R, Chand S. Degumming of silk with a fungal protease. Indian J Fibre Text Res. 2000;25:138-42.
     Google Scholar
  34. Gamo T, Inokuchi T, Laufer H. Polypeptides of fibroin and sericin secreted from the different sections of the silk gland in Bombyx mori. Insect Biochem. 1977;7(3):285-95. doi: 10.1016/0020-1790(77)90026-9.
     Google Scholar
  35. Gupta D, Agrawal A, Rangi A. Extraction and characterization of silk sericin. Indian J Fibre Text Res. 2014;39:364-72.
     Google Scholar
  36. Wang WH, Lin WS, Shih CH, Chen CY, Kuo SH, Li WL et al. Functionality of silk cocoon (Bombyx mori L.) sericin extracts obtained through the high-temperature hydrothermal method. Materials (Basel). 2021, September 15;14(18):5314, 34576538. doi: 10.3390/ma14185314, PMID 34576538: 34576538. PMCID PMC8468092.
     Google Scholar
  37. Sprague KU. The Bombyx mori silk proteins: characterization of large polypeptides. Biochemistry. 1975;14(5):925-31. doi: 10.1021/bi00676a008, PMID 1125178.
     Google Scholar
  38. Wu JH, Wang Z, Xu SY. Preparation and characterization of sericin powder extracted from silk industry wastewater. Food Chem. 2007;103(4):1255-62. doi: 10.1016/j.foodchem.2006.10.042.
     Google Scholar
  39. Kato N, Sato S, Yamanaka A, Yamada H, Fuwa N, Nomura M. Silk protein, sericin, inhibits lipid peroxidation and tyrosinase activity. Biosci Biotechnol Biochem. 1998;62(1):145-7. doi: 10.1271/bbb.62.145, PMID 9501526.
     Google Scholar
  40. Takasu Y, Yamada H, Tsubouchi K. Isolation of three main sericin components from the cocoon of the silkworm, Bombyx mori. Biosci Biotechnol Biochem. 2002;66(12):2715-8. doi: 10.1271/bbb.66.2715, PMID 12596874.
     Google Scholar
  41. da Silvaa TL, da Silva Juniora AC, Ribanib M, Vieiraa MLG, da Silva MG. Evaluation of molecular weight distribution of sericin in solutions concentrated via precipitation by ethanol and precipitation by freezing/thawing. Chem Eng. 2014;38:103-8.
     Google Scholar
  42. Dash R, Ghosh SK, Kaplan DL, Kundu SC. Purification and biochemical characterization of a 70 kDa sericin from tropical tasar silkworm, Antheraea mylitta. Comp Biochem Physiol B Biochem Mol Biol. 2007;147(1):129-34. doi: 10.1016/j.cbpb.2007.01.009, PMID 17350301.
     Google Scholar
  43. Turbiani FR, Tomadon J, Seixas FL, Gimenes M. Properties and structure of sericin films: effect of the crosslinking degree. Chem Eng Trans. 2011;24:1489-94..
     Google Scholar
  44. Gulrajani ML, Brahma KP, Kumar PS, Purwar R. Application of silk sericin to polyester fabric. J Appl Polym Sci. 2008;109(1):314-21. doi: 10.1002/app.28061.
     Google Scholar
  45. Song Y, Wei D. Preparation and characterization of graft copolymers of silk sericin and methyl methacrylate. Polym Polym Compos. 2006;14(2):169-74. doi: 10.1177/096739110601400206.
     Google Scholar
  46. Saha JH, Mondal MI, Karim Sheikh MR, Habib MA. Extraction, Structural and Functional Properties of Silk Sericin Biopolymer from Bombyx mori Silk Cocoon Waste. J Textile Sci Eng. 2019;09(1). doi: 10.4172/2165-8064.1000390.
     Google Scholar
  47. Tsukada M. Thermal decomposition behavior of sericin cocoon. J Appl Polym Sci. 1978;22(2):543-54. doi: 10.1002/app.1978.070220221.
     Google Scholar
  48. Çapar G, Aygün SS. Characterization of sericin protein recovered from silk wastewaters. Turk Bull Hyg Exp Biol. 2015;72(3):219-34. doi: 10.5505/TurkHijyen.2015.47113.
     Google Scholar
  49. Sarovart S, Sudatis B, Meesilpa P, Grady BP, Magaraphan R. The use of sericin as an antioxidant and antimicrobial for polluted air treatment. Reviews on Advanced Materials Science, 2003; 5: 193–198.
     Google Scholar
  50. Yang C-C, Lee Y-J, Yang JM. Direct methanol fuel cell (DMFC) based on PVA/MMT composite polymer membranes. Journal of Power Sources, 2009;188(1): 30–37. https://doi.org/10.1016/j.jpowsour.2008.11.098.
     Google Scholar