##plugins.themes.bootstrap3.article.main##

The industrial pollutants in water bodies tend to unsuitable for living organisms and irrigation uses. Water contamination is exaggerating at regular pace and the universe is holding carcinogenic agents. Therefore, there is a necessity of immediate action to generate a potential and efficient technology for water management. By means of this, quantum dots (QDs) have emerged as an effective probe for the removal process. This review discusses the methods for removing and degrading the coloured components, pesticides, pathogens from waste water and contaminants removal ability of QDs.

References

  1. A. A. Alqadami, M. Naushad, M. A. Abdalla, M. R. Khan, Z. A. Alothman, “Adsorptive Removal of Toxic Dye Using Fe3O4–TSC Nanocomposite: Equilibrium, Kinetic, and Thermodynamic Studies”, J. Chem. Eng. Data , vol. 61, pp.3806–3813, Oct 2016.
     Google Scholar
  2. E. Daneshvar, A. Vazirzadeh, A. Niazi A et al, “Desorption of Methylene blue dye from brown macroalga: effects of operating parameters, isotherm study and kinetic modelling”, J Clean Prod, vol. 152, pp. 443–453, May 2017.
     Google Scholar
  3. M. Naushad, T. Ahamad, G. Sharma et al, “Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion”, ChemEng J, vol. 300, pp. 306–316.Sep 2016.
     Google Scholar
  4. G. Sharma, M. Naushad, D. Pathania, A. Kumar, “A multifunctional nano composite pectin thorium (IV) tungstomolybdate for heavy metal separation and photo remediation of malachite green”, Desalin. Water Treat, vol.57, pp. 19443-19455, Sep 2016.
     Google Scholar
  5. Niyaz Mohammad Mahmoodi, Mokhtar Arami, “Numerical finite volume modeling of dye decolorization using immobilized titania nano photocatalysis”, Chemical Engineering Journal, Vol. 146, pp. 189-193, Feb 2009.
     Google Scholar
  6. F. D. Ardejani, K. H. Badii, N. L. Yousefi, N. M. Mahmoodi, M. Arami et al, “Numerical modelling and laboratory studies on the removal of Direct Red 23 and Direct Red 80 dyes from textile effluents using orange peel, a low-cost adsorbent”, Dyes and Pigments, Vol. 73, pp. 178-185, Jan 2006.
     Google Scholar
  7. R. F. Barbieri, P. J. Lester, A.S. Miller, K.G. Ryan, “A neurotoxic pesticide changes the outcome of aggressive”, Proc. R. Soc. B Biol. Sci, vol. 280, pp. 2013-2157, Dec 2013.
     Google Scholar
  8. M. A. Beketov, B. J. Kefford, R. B. Schäfer, M. Liess, “Pesticides reduce regional biodiversity of stream invertebrates”, Proc. Natl. Acad. Sci., vol. 110, pp. 11039– 11043, U. S. A, 2013.
     Google Scholar
  9. G. Lautner, J. Kaev, J. Reut, A. Öpik, J. Rappich, V. Syritski, R. E. Gyurcsányi, “Selective Artificial Receptors Based on Micro patterned Surface‐Imprinted Polymers for Label‐Free Detection of Proteins by SPR Imaging”, Adv. Funct. Mater, vol. 21, pp. 21, 591–597, Feb 2011.
     Google Scholar
  10. R. V. Shutov, A. Guerreiro, E. Moczko, I. P.de Vargas-Sansalvador, I. Chianella,, M.J.Whitcombe, S.A.Piletsky, “Introducing MINA--The Molecularly Imprinted Nanoparticle Assay”, Nano-micro Small, vol. 10, pp. 1086-1089, Mar 2014.
     Google Scholar
  11. A. P. Alivisatos, “Perspectives on the physical chemistry of semiconductor nanocrystals”, J. Phys. Chem, vol. 100, pp. 13226–13239, Aug 1996.
     Google Scholar
  12. D. Bera, L. Qian, P. H. Holloway, “Phosphor Quantum Dots”,John Wiley & Sons, Ltd; ch. 2, pp. 22, 2008, West Sussex, UK.
     Google Scholar
  13. A. D. Yoffe, Adv. Phys, “Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems”, vol. 42, pp. 173-266, Jan 1993.
     Google Scholar
  14. S. C. Erwin, L. J. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, D. J. Norris, “Doping semiconductor nanocrystals”, Nature (London), vol.436, pp. 91-94, July 2005.
     Google Scholar
  15. D. J. Norris, A. L. Efros, S. C. Erwin, “Doped nanocrystals”, Science, vol. 319, pp. 1776–1779, Mar 2008.
     Google Scholar
  16. H. S. Yang, S. Santra, P. H. Holloway, “Syntheses and applications of Mn-doped II-VI semiconductor nanocrystals”, J. Nanosci. Nanotechnology, vol. 5, pp. 1364–1375, Sep 2005.
     Google Scholar
  17. Y. A. Yang, O. Chen, A. Angerhofer, Y. C. Cao, “Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals”, J. Am. Chem. Soc, vol. 128, pp. 12428–12429, Sep 2006.
     Google Scholar
  18. Y. Wang, N. Herron, “Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties”, J. Phys. Chem, vol. 95, pp. 525–532, Jan 1991.
     Google Scholar
  19. X. Li, M. Rui, J. Song, Z. Shen and H. Zeng, “Carbon and graphene quantum dots for optoelectronic and energy devices: a review”, Adv. Func. Mater, vol. 25, pp. 4929, July 2015.
     Google Scholar
  20. Y. Song, S. Zhu, S. Xiang, X. Zhao, J. Zhang, H. Zhang, Y. Fu, B. Yang, “Investigation into the fluorescence quenching behaviors and applications of carbon dots”, Nanoscale, vol. 6 , pp. 4676, Feb 2014.
     Google Scholar
  21. X. Hua, Y. Bao, Z. Chen, F. Wu, “Carbon quantum dots with intrinsic mitochondrial targeting ability for mitochondria-based theranostics”, Nanoscale, vol. 9, pp. 10948, Jun 2017.
     Google Scholar
  22. Y. Wang Y, Hu A, “Carbon quantum dots: synthesis, properties and applications”, J. Mat. Chem, vol. 2, pp. 6921–6939, June 2014.
     Google Scholar
  23. SY. Lim, W. Shen, Z. Gao, “Carbon quantum dots and their applications”, Chem. Soc. Rev, vol. 44, pp. 362–381, Oct 2014.
     Google Scholar
  24. X. Zhou, Y. Zhang, C. Wang, X. Wu, Y. Yang, B. Zheng, H. Wu, S. Guo, J. Zhang, “Photo-Fenton reaction of graphene oxide: a new strategy to prepare graphene quantum dots for DNA cleavage”, ACS Nano, vol.6,pp. 6592–6599, July 2012.
     Google Scholar
  25. Y. Dong, C. Chen, X. Zheng, L. Gao, Z. Cui, H. Yang, C. Guo, Y. Chi, C. M. Li, “One-step and high yield simultaneous preparation of single-and multi-layer graphene quantum dots from CX-72 carbon black”, J. Mater. Chem, vol. 22, pp. 8764–8766, Mar 2012.
     Google Scholar
  26. V. Gupta, N. Chaudhary, R. Srivastava, G. D. Sharma, R. Bhardwaj, S. Chand, “Luminscent graphene quantum dots for organic photovoltaic devices”, J. Am. Chem. Soc, vol.133, pp. 9960–9963, June 2011.
     Google Scholar
  27. Amandeep Kaur, Ahmad Umar, Sushil Kumar Kansal, “Sunlight-driven photocatalytic degradation of non-steroidal anti-inflammatory drug based on TiO2 quantum dots”, Journal of Colloid and Interface Science, vol. 459, pp. 257-263, Dec 2015.
     Google Scholar
  28. G. Chayene, Anchieta, Daniela Sallet, L. Edson, Foletto, Syllos S.da Silva, Osvaldo Chiavone-Filho, Claudio A. O. do Nascimento, “Synthesis of ternary zinc spinel oxides and their application in the photo degradation of organic pollutant”, Ceramics International, vol. 40, pp. 4173-4178, Apr 2014.
     Google Scholar
  29. Jun Zhang, Xueying Zhang, Shanshan Dong, Xian Zhou, Shuangshi Dong, “N-doped carbon quantum dots/TiO2 hybrid composites with enhanced visible light driven photocatalytic activity toward dye wastewater degradation and mechanism”, Journal of Photochemistry and Photobiology A: Chemistry, vol. 325, pp. 104-110, July 2016.
     Google Scholar
  30. Gaurav Sharma, Anuj Kumar, Mu Naushad, Amit Kumar, Ala'a H. Al-Muhtaseb, Pooja Dhiman, Ayman A. Ghfar, Florian J. Stadler, M. R. Khand, “Photoremediation of toxic dye from aqueous environment using monometallic and bimetallic quantum dots based nanocomposites”, Journal of Cleaner Production, vol. 172, pp. 2919-2930, June 2016.
     Google Scholar
  31. Mojtaba Shamsipur, Hamid Reza Rajabi, “Study ofphotocatalytic activity of ZnS quantum dots as efficient nanoparticles for removal of methyl violet: effect of ferric ion doping”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 122, pp. 260-267, March 2014.
     Google Scholar
  32. M. J. Puchana-Rosero, Matthew A. Adebayo, Eder C. Lima, Fernando M. Machado, Pascal S. T hue, Julio C. P. Vaghetti, Cibele S. Umpierres, Mariliz Gutterres, “Microwave-assisted activated carbon obtained from the sludge of tannery-treatment effluent plant for removal of leather dyes”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 504, pp. 105-115, September 2016.
     Google Scholar
  33. Mojtaba Shamsipur, Hamid Reza Rajabi, Omid Khani, “Pure and Fe3+-doped ZnS quantum dots as novel and efficient nano photocatalysts: Synthesis, characterization and use for decolorization of Victoria blue R”, Materials Science in Semiconductor Processing,vol. 16, pp. 1154-1161, Aug 2013.
     Google Scholar
  34. Mohammad A. Behnajady, YasaminTohidi, “Synthesis, Characterization and Photocatalytic Activity of Mg‐Impregnated ZnO–SnO2 Coupled Nanoparticles”, photochemistry and photobiology, vol. 90, pp. 51-56, Feb 2014.
     Google Scholar
  35. Hamid Reza Rajabi, HoomanArjmand, Hossein Kazemdehdashti, Mohammad Farsi, “Synthesis, Characterization and Photocatalytic Activity of Mg‐Impregnated ZnO–SnO2 Coupled Nanoparticles”, Journal of Environmental Chemical Engineering, vol. 4, pp. 2830-2840, Sep 2016.
     Google Scholar
  36. Hamid Reza Rajabi, Omid Khani, Mojtaba Shamsipur, Vahid Vatanpour, “High-performance pure and Fe3+-ion doped ZnS quantum dots as green nanophotocatalysts for the removal of malachite green under UV-light irradiation”, Journal of Hazardous Materials, vol. 250, pp. 370-378, Apr 2013.
     Google Scholar
  37. S. Muthulingam, In-Hwan Lee, Periyayya Uthirakumar, “Highly efficient degradation of dyes by carbon quantum dots/N-doped zinc oxide (CQD/N-ZnO) photocatalyst and its compatibility on three different commercial dyes”, Journal of Colloid and Interface Science, vol. 455, pp. 101-109, Oct 2015.
     Google Scholar
  38. Yulong Ying, Peng He, Guqiao Ding, Xinsheng Peng, “Ultrafast adsorption and selective desorption of aqueous aromatic dyes by graphene sheets modified by graphene quantum dots”, Nanotechnology, vol. 27, Number 24, May 2016.
     Google Scholar
  39. Bahram Hemmateenejad, ParisaShadabipour, TaherehKhosousi, MojtabaShamsipur, “Chemometrics investigation of the light-free degradation of methyl green and malachite green by starch-coated CdSe quantum dots”, Journal of Industrial and Engineering Chemistry, vol. 27, pp. 384-390, July 2015.
     Google Scholar
  40. Hossein Safardoust-Hojaghan, Masoud Salavati-Niasari, “Degradation of methylene blue as a pollutant with N-doped graphene quantum dot/titanium dioxide nanocomposite”, Journal of Cleaner Production, vol. 148, pp. 31-36, Apr 2017.
     Google Scholar
  41. Xu, Q. Zhou, Z. Hua, Q. Xue, C. Zhang, X. Wang, D. Pan, M. Xiao, “Single particle spectroscopic measurements of fluorescent graphene quantum dots”, `ACS nano, vol. 7, pp. 10654-10661, Nov 2013.
     Google Scholar
  42. Archita Bhattacharjee, M. Ahmaruzzaman, “A novel and green process for the production of tin oxide quantum dots and its application as a photocatalyst for the degradation of dyes from aqueous phase”, Journal of Colloid and Interface Science, vol. 448, pp. 130-139, June 2015.
     Google Scholar
  43. Bipin Kumar Gupta, GarimaKedawat, Yogyata Agrawal, Pawan Kumar, Jaya Dwivedia, S. K. Dhawana, “A novel strategy to enhance ultraviolet light driven photocatalysis from graphene quantum dots in filled TiO2 nanotube arrays”, RSC Adv, vol. 5, pp. 10623-10631, Nov 2015.
     Google Scholar
  44. P. Wu, X.-P. Yan, “A Review of Methods for the Analysis of Orphan and Difficult Pesticides: Glyphosate, Glufosinate, Quaternary Ammonium and Phenoxy Acid Herbicides, and Dithiocarbamate and Phthalimide Fungicides”, Chem. Soc. Rev, vol. 42, pp. 5489-5521, Mar 2013.
     Google Scholar
  45. H. Li, Y. Li, J. Cheng, “Imprinted photonic polymers for chiral recognition”, Chem. Mater, vol. 22, pp. 2451-2457, Mar 2010.
     Google Scholar
  46. H. Li, F. Qu, “Synthesis of CdTe quantum dots in sol− gel-derived composite silica spheres coated with calix [4] arene as luminescent probes for pesticides”, Chem. Mater, vol. 19, pp. 4148-4154, July 2007.
     Google Scholar
  47. X.Hu, X.Gao, “Silica− Polymer Dual Layer-Encapsulated Quantum Dots with Remarkable Stability”, ACS Nano, vol. 4, pp. 6080-6086, Sep 2010.
     Google Scholar
  48. F.Qu, X. Zhou, J. Xu, H. Li, G. Xie, “Luminescence switching of CdTe quantum dots in presence of p-sulfonatocalix [4] arene to detect pesticides in aqueous solution”, Talanta, vol. 78, pp. 1359-1363, Jun 2009.
     Google Scholar
  49. W. Y. Shiu, K. C. Ma, D. Varhanickova and D. Mackay, “Chlorophenols and alkylphenols: a review and correlation of environmentally relevant properties and fate in an evaluative environment”, Chemosphere, vol. 29, pp. 1155-1224, Sep 1994.
     Google Scholar
  50. L. H. Keith and W. A. Telliard, “ES&T special report: priority pollutants: Ia perspective view”, Environ. Sci. Technol, vol. 13, pp. 416-423, Apr 1979.
     Google Scholar
  51. Xiaojiao Du, Ding Jiang, Qian Liu, Gangbing Zhu, Hanping Mao, Kun Wang, “Fabrication of graphene oxide decorated with nitrogen-doped graphene quantum dots and its enhanced electrochemiluminescence for ultrasensitive detection of pentachlorophenol”, Analyst, vol. 140, pp. 1253-1259, Apr 2015.
     Google Scholar
  52. Erhan Zor, Eden Morales-Narváez, Alejandro Zamora-Gálvez, Haluk Bingol, Mustafa Ersoz, ArbenMerkoçi, “Graphene quantum dots-based photoluminescent sensor: a multifunctional composite for pesticide detection”, ACS Appl. Mater. Interfaces, vol. 36, pp. 20272–20279, Aug 2015.
     Google Scholar
  53. Shilpi Agarwal, Nima Sadeghi, Inderjeet Tyagi, Vinod Kumar Gupta, Ali Fakhri, “Adsorption of toxic carbamate pesticide oxamyl from liquid phase by newly synthesized and characterized graphene quantum dots nanomaterials”, Journal of Colloid and Interface Science, vol. 478, pp. 430-438, Sep 2016.
     Google Scholar
  54. Samaneh Akbarzade, Mahmoud Chamsaz, Gholam Hossein Rounaghi, Mahdi Ghorbani, “Zero valent Fe-reduced graphene oxide quantum dots as a novel magnetic dispersive solid phase microextraction sorbent for extraction of organophosphorus”, Analytical and Bioanalytical Chemistry, vol. 410, pp. 429–439, Apr 2018.
     Google Scholar
  55. Mohammad Amjadi, RoghayehJalili, “Molecularly imprinted mesoporous silica embedded with carbon dots and semiconductor quantum dots as a ratiometric fluorescent sensor for diniconazole, Biosensors and Bioelectronics”, vol. 96, pp. 121-126, Oct 2017.
     Google Scholar
  56. Richa Jackeray, C. K. V. Zainul Abid, Gurpal Singh, Swati Jain, S. Chattopadhyaya, Sameer Sapra, T. G. Shrivastav, Harpal Singh, “Selective capturing and detection of Salmonella typhi on polycarbonate membrane using bio conjugated quantum dots”, Talanta, vol. 84, pp. 952-962, May 2011.
     Google Scholar
  57. Jyoti K. Jaiswal, Hedi Mattoussi, J. Matthew Mauro & Sanford M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates”, Nature Biotechnology, vol. 21, pp. 47–51, May 2003.
     Google Scholar
  58. XiuhengXue, Jian Pan, HuimingXie, Juhua Wang, Shuang Zhang, “Fluorescence detection of total count of Escherichia coli and Staphylococcus aureus on water-soluble CdSe quantum dots coupled with bacteria”, Talanta, vol. 77, pp. 1808-1813, Mar 2009.
     Google Scholar
  59. Pengju G. Luo, Fred J. Stutzenberger, “Nanotechnology in the detection and control of microorganisms”, Advances in Applied Microbiology, vol.63, pp. 145-181, Jun 2008.
     Google Scholar
  60. Richa Jackeray, C. K. V. ZainulAbid, Gurpal Singh, Swati Jain, S. Chattopadhyaya, Sameer Sapra, T.G.Shrivastav, Harpal Singh, “Selective capturing and detection of Salmonella typhi on polycarbonate membrane using bioconjugated quantum dots”, Talanta, vol. 84, pp. 952-962, May 2011.
     Google Scholar
  61. Xiyang Ma, Quanjun Xiang, Yulong Liao, Tianlong Wen, Huaiwu Zhang, “Visible-light-driven CdSe quantum dots/graphene/TiO2nanosheets composite with excellent photocatalytic activity for E. coli disinfection and organic pollutant”, Applied Surface Science, vol. 457, pp. 846-855,Nov 2018.
     Google Scholar
  62. Zhiping Zeng, Dingshan Yu, Ziming He, Jing Liu, Fang-Xing Xiao, Yan Zhang, Rong Wang, Dibakar Bhattacharyya, Timothy Thatt Yang Tan, “Graphene oxide quantum dots covalently functionalized PVDF membrane with significantly-enhanced bactericidal and antibiofouling performances”, Scientific Reports, vol. 6, Article number: 20142, Feb 2016.
     Google Scholar
  63. K. Mandal, Tapas, Parvin, Nargish, “Rapid detection of bacteria by carbon quantum dots”, Journal of Biomedical Nanotechnology, vol. 7, pp. 846-848, Dec 2011.
     Google Scholar
  64. Prem Singh Saud, Bishweshwar Pant, Al-MahmnurAlam, Zafar Khan Ghouri, Mira Park, Hak-Yong Kim, “Carbon quantum dots anchored TiO2 nanofibers: Effective photocatalyst for waste water treatment”, Ceramics International, vol. 41, Part B, pp. 11953-11959, Nov 2015.
     Google Scholar