University of Tuzla, Bosnia and Herzegovina
University of Tuzla, Bosnia and Herzegovina
University of Tuzla, Bosnia and Herzegovina
* Corresponding author
Pharmacy Ibn Sina, Bosnia and Herzegovina
University of Tuzla, Bosnia and Herzegovina
University of Tuzla, Bosnia and Herzegovina
University of Tuzla, Bosnia and Herzegovina
University of Tuzla, Bosnia and Herzegovina

Article Main Content

Human serum albumin (HSA) is one of the most important transporters for drugs in the systemic circulation. In this study, we investigated the interaction of rosuvastatin (ROS) and atorvastatin (ATO) with HSA. Binding of a drug molecule to HSA significantly affects the pharmacokinetics of the drug as it increases drug solubility in plasma, decreases toxicity and protects molecules from oxidation. This study was made using fluorescence spectroscopy and molecular modeling approach. Fluorescence spectra were recorded for two different statins brands at seven different concentrations. The results revealed that both statins (ROS and ATO) cause the fluorescence quenching of the HSA solution. ROS and ATO binds strongly to HSA with the binding constant (Kb) of 1.0246×106 and 0,9018×106, respectively. In addition, it was observed that high concentrations of ATO cause a shift of the emission maximum towards longer wavelengths (red-shift), which may be due to the unfolding of protein chains or denaturation. Furthermore, it was calculated that HSA possesses one binding site for ROS and ATO. Results from molecular docking showed that ROS has a higher affinity for Sudlow site I compared to Sudlow site II and the main binding forces are hydrogen bonds. ATO has nearly equal affinity for both binding sites on HSA, and the main binding forces are hydrophobic interactions.

References

  1. Yu YT, Liu J, Hu B, Wang RL, Yang XH, Shang XL, et al. Expert consensus on the use of human serum albumin in critically ill patients. Chin Med J (Engl). 2021; 134(14):1639–1654. doi: 10.1097/CM9.0000000000001661.
     Google Scholar
  2. Wang Q, Huang CR, Jiang M, Zhu YY, Wang J, Chen J, et al. Binding interaction of atorvastatin with bovine serum albumin: Spectroscopic methods and molecular docking. Spectrochim Acta A Mol Biomol Spectrosc. 2016;156:155–63. doi: 10.1016/j.saa.2015.12.003.
     Google Scholar
  3. Caraceni P, Tufoni M, Bonavita ME. Clinical use of albumin. Blood Transfus. 2013; 11 Suppl 4(Suppl 4):s18–25. doi: 10.2450/2013.005s.
     Google Scholar
  4. Salem AA, Lotfy M, Amin A, Ghattas MA. Characterization of human serum albumin's interactions with safranal and crocin using multi-spectroscopic and molecular docking techniques. Biochem Biophys. 2019; Rep 20:100670. doi: 10.1016/j.bbrep.2019.100670.
     Google Scholar
  5. Hashempour S, Shahabadi N, Adewoye A, Murphy B, Rouse C, Salvatore BA. Binding Studies of AICAR and Human Serum Albumin by Spectroscopic, Theoretical, and Computational Methodologies. Molecules. 2020; 25(22):5410. doi: 10.3390/molecules25225410.
     Google Scholar
  6. Vladimirov S, Živanov-Stakić D. Farmaceutska hemija 2 deo. Bariprint, Belgrade, Serbia; 2006.
     Google Scholar
  7. Afkham S, Hanaee J, Zakariazadeh M, Fathi F, Shafiee S, Soltani S. Molecular mechanism and thermodynamic study of Rosuvastatin interaction with human serum albumin using a surface plasmon resonance method combined with a multi-spectroscopic, and molecular modeling approach. Eur J Pharm Sci. 2022; 168:106005. doi: 10.1016/j.ejps.2021.106005.
     Google Scholar
  8. Ramkumar S, Raghunath A, Raghunath S. Statin Therapy: Review of Safety and Potential Side Effects. Acta Cardiol Sin. 2016; 32(6):631–639. doi: 10.6515/acs20160611a.
     Google Scholar
  9. Chatterjee T, Pal A, Dey S, Chatterjee BK, Chakrabarti P. Interaction of virstatin with human serum albumin: spectroscopic analysis and molecular modeling. PLoS One. 2012; 7(5):e37468. doi: 10.1371/journal.pone.0037468.
     Google Scholar
  10. Shi JH, Wang Q, Pan DQ, Liu TT, Jiang M. Characterization of interactions of simvastatin, pravastatin, fluvastatin, and pitavastatin with bovine serum albumin: multiple spectroscopic and molecular docking. J Biomol Struct Dyn. 2017; 35(7):1529–1546. doi: 10.1080/07391102.2016.1188416.
     Google Scholar
  11. Haghaei H, Norouzi S, Zakariazadeh M, Soltani S. Investigation of Atorvastatin interaction with human serum albumin: evaluation of pH effect and competitive binding with warfarin. J. Res. Pharm. 2022; 26(5):1386–1402. doi: 10.29228/jrp.232.
     Google Scholar
  12. Chaves OA, Amorim AP, Castro LH, Sant'Anna CM, de Oliveira MC, Cesarin-Sobrinho D, et al. Fluorescence and Docking Studies of the Interaction between Human Serum Albumin and Pheophytin. Molecules. 2015; 20(10):19526–39. doi: 10.3390/molecules201019526.
     Google Scholar
  13. Lakowicz JR. Principles of Fluorescence Spectroscopy. 3rd ed. Springer, Baltimore, MD, USA; 2006.
     Google Scholar
  14. Smajlović A, Hasanbašić S, Biberović M, Džuzdanović A, Mujagić Z. 5-fluorouracil and doxorubicin interactions with human serum albumin at mild acidic condition. Pharmacia. 2015; 18(1):22–29.
     Google Scholar
  15. Varlan A, Hillebrand M. Bovine and Human Serum Albumin Interactions with 3-Carboxyphenoxathiin Studied by Fluorescence and Circular Dichroism Spectroscopy. Molecules 2010; 15(6):3905–19. doi: 10.3390/molecules15063905.
     Google Scholar
  16. Duy C, Fitter J. How aggregation and conformational scrambling of unfolded states govern fluorescence emission spectra. Biophys J. 2006; 90(10):3704–11. doi: 10.1529/biophysj.105.078980.
     Google Scholar
  17. Zhang Y, Cao Y, Li Y, Zhang X. Interactions between Human Serum Albumin and Sulfadimethoxine Determined Using Spectroscopy and Molecular Docking. Molecules. 2022; 27(5):1526. doi: 10.3390/molecules27051526.
     Google Scholar
  18. Bakkialakshmi S, Chandrakala DA. Study on the Interaction of 5-Fluorouracil with Human Serum Albumin using Fluorescence Quenching Method. J. Pharm. Sci. & Res. 2011; 3, 1326–1329. doi: 10.1016/j.jlumin.2014.01.063.
     Google Scholar
  19. Ranjbar S, Shokoohinia Y, Ghobadi S, Bijari N, Gholamzadeh S, Moradi N, et al. Studies of the Interaction between Isoimperatorin and Human Serum Albumin by Multispectroscopic Method: Identification of Possible Binding Site of the Compound Using Esterase Activity of the Protein. Sci. World J. 2013; 2013:305081. doi: 10.1155/2013/305081.
     Google Scholar
  20. Qureshi MA, Javed S. Investigating binding dynamics of trans resveratrol to HSA for an efficient displacement of aflatoxin B1 using spectroscopy and molecular simulation. Sci Rep. 2022; 12, 2400. doi: 10.1038/s41598-022-06375-5.
     Google Scholar
  21. Tanwir A, Rahat Ja, Mohiuddin Q, Mohammad AK, Khalid H. Spectroscopic Studies of the Interaction between Metformin Hydrochloride and Bovine Serum Albumin. Dhaka Univ. J. Pharm. Sci. 2012; 11(1), 45–49. doi: 10.3329/dujps.v11i1.12486.
     Google Scholar
  22. Li J, Li J, Jiao Y, Dong C. Spectroscopic analysis and molecular modeling on the interaction of jatrorrhizine with human serum albumin (HSA). Spectrochim Acta A Mol Biomol Spectrosc. 2014; 118:48–54. doi: 10.1016/j.saa.2013.07.029.
     Google Scholar
  23. Awang T, Wiriyatanakorn N, Saparpakorn P, Japrung D, Pongprayoon P. Understanding the effects of two bound glucose in Sudlow site I on structure and function of human serum albumin: theoretical studies. J Biomol Struct Dyn. 2017; 35(4):781–790. doi: 10.1080/07391102.2016.1160841.
     Google Scholar
  24. Belinskaia DA, Goncharov NV. Theoretical and Practical Aspects of Albumin Esterase Activity. Russ J Bioorg Chem. 2020; 46:287–298. doi: 10.1134/S1068162020030036.
     Google Scholar