##plugins.themes.bootstrap3.article.main##

Effects of Nepal origin plant species of Vitex negundo, Catharanthus roseu, Aegle marmelos and Elaeocarpus ganitrus extracts on mild steel corrosion were explored in bioethanol (E100) and its blend (E15) in airtight condition at 25±2 °C using static immersion, inhibition efficiency and mechanism tests which were complemented with adsorption isotherms and potentiodynamic polarization studies. Corrosion resistance of the mild steel was increased with increasing 500-2000 ppm concentrations of each plant extract in E100 and E15 biofuels. Additions of V. negundo and C. roseus extract separately in both the biofuels seems to be more effective inhibition actions to prevent the mild steel corrosion than A. marmelos or E. ganitrus addition so as the corrosion rates of the mild steel in E100 and E15 are successfully lowered even than in commercial gasoline (E0). The results obtained from the corrosion rate revealed the order of the corrosion inhibition efficiency (IE) as V. negundo > C. roseus > A. marmelos > E. ganitrus. The maximum IE (IEmax) in V. negundo and C. roseus leaves was showed about 89-86% and 71-75%, respectively, at 2000 ppm concentration, in spite of the other two more plants leaf extract also used as the corrosion inhibitors for the mild steel in both E100 and E15 biofuels. The IE increased on increasing inhibitor concentration following the Langmuir and Temkin adsorption isotherms but decreased with immersion time which suggested that the corrosion inhibition mechanism is of physical type of adsorption of the leaves constituents on the mild steel surface. A. marmelos extract acted as an anodic type of inhibitor in E100 and E15, while E. ganitrus acted as mixed

References

  1. Haseeb, A. S. M. A., Fazal, M. A., Jahirul, M. I., and Masjuki, H. H. (2011). Compatibility of automotive materials in biodiesel: a review. Fuel 90(3):922-931. https://doi.org/10.1016/j.fuel.2010.10.042.
     Google Scholar
  2. Torsner, E. (2010). Solving corrosion problems in biofuels industry. Energy Materials 5(2):42-48. doi:10.1179/147842209X12579401586726.
     Google Scholar
  3. Kumal, R. R., Liu, J., Gharpure, A.,1, Vander Wal, R. L., Kinsey, J. S., Giannelli, B., Stevens, J., Cullen Leggett, C., Howard, R., Forde, M., Zelenyuk-Imre, A., Suski, K., Payne, G., Manin, J., Bachalo, W., Frazee, R., Onasch, T. B., Freedman, A., Kittelson, D. B., and Swanson, J. J. (2020). Impact of biofuel blends on black carbon emissions from a gas turbine engine. Energy Fuels 34(4):4958-4966. http://dx.doi.org/10.1021/acs.energyfuels.0c00094.
     Google Scholar
  4. Erdiwansyah, Mamat, R., Sani, M. S. M., Sudhakar, K., Kadarohman, A., and Sardjono, R. E. (2019). An overview of higher alcohol and biodiesel as alternative fuels in engines. Energy Reports 5:467-479. https://doi.org/10.1016/j.egyr.2019.04.009.
     Google Scholar
  5. Martini, G., Astorga, C., Adam, T., Farfaletti, A., Manfredi, U., Montero, L., Krasenbrink, A., Larsen, B., and De Santi, G. (2011). Effect of fuel ethanol content on exhaust emissions of a flexible fuel vehicle. JRC Report, European Commission Joint Research Centre Institute for Environment and Sustainability. https://doi.org/10.2788/39589.
     Google Scholar
  6. Nguyen, X. P., and Vu, H. N. (2019). Corrosion of the metal parts of diesel engines in biodiesel-based fuels. International Journal of Renewable Energy Development 8(2):119-132. https://doi.org/10.14710/ijred.8.2.119-132.
     Google Scholar
  7. Bisiga, C., Rothb, M., Müllerb, L., Comtec, P., Heebd, N., Mayere, A., Czerwinskic, J., Petri-Finka, A., and Rothen-Rutishausera, B. (2016). Hazard identification of exhausts from gasoline-ethanol fuel blends using a multi-cellular human lung model. Environmental Research 151:789-796. http://dx.doi.org/10.1016/j.envres.2016.09.010.
     Google Scholar
  8. Setting the ethanol limit in petrol (2002). An issue paper. Canberra, Australia: Environment Australia.
     Google Scholar
  9. Research & Markets (2020). Bioethanol market by feedstock (starch based, sugar based, cellulose based), end-up industry (transportation, pharmaceuticals, cosmetics, alcoholic beverages), fuel blend (E5, E10, E15 to E70, E75 and E85) and region-global forecast to 2025. https://www.researchandmarkets.com/r/9yor71.
     Google Scholar
  10. Cao, L., Frenkel, G. S., and Sridhar, N. (2013). Effect of oxygen on ethanol stress corrosion cracking susceptibility, Part 2: Dissolution-based cracking mechanism. Corrosion 69(9):851-862. https://doi.org/10.5006/0895.
     Google Scholar
  11. Anderson, J. E., DiCicco, D. M., Ginder, J. M., Kramer, U., Leone, T. G., Raney-Pablo, H. E., and Wallington, T. J. (2012). High octane number ethanol–gasoline blends: quantifying the potential benefits in the United States. Fuel 97:585-594. https://doi.org/10.1016/j.fuel.2012.03.017.
     Google Scholar
  12. Kramer, G. R., Méndez, C. M., and Ares, A. E. (2018). Evaluation of corrosion resistance of commercial aluminum alloys in ethanol solutions. Materials Research 21(6):e20170272 (pp. 12). https://dx.doi.org/10.1590/1980-5373-mr-2017-0272.
     Google Scholar
  13. Costa, R. C., and Sodre, J. R. (2010). Hydrous ethanol vs. gasoline-ethanol blend: Engine performance and emissions. Fuel 89(2):287-293. https://doi.org/10.1016/j.fuel.2009.06.017.
     Google Scholar
  14. Yesilyurt, M. K., Öner, I. V., and Yilmaz, E. C. (2019). Biodiesel induced corrosion and degradation: Review. Pamukkale University Journal of Engineering Sciences 25(1):60-70. http://dx.doi.org/10.5505/pajes.2018.01885.
     Google Scholar
  15. Subedi, B. N., Amgain, K., Joshi, S., and Bhattarai, J. (2019). Green approach to corrosion inhibition effect of Vitex negundo leaf extract on aluminum and copper metals in biodiesel and its blend. International Journal of Corrosion and Scale Inhibitor 8(3):744-759. http://dx.doi.org/10.17675/2305-6894-2019-8-3-21.
     Google Scholar
  16. Dharma, D., Ong, H. C, Masjuki, H. H., Sebayang, A. H., and Silitonga, A. S. (2016). An overview of engine durability and compatibility using biodiesel–bioethanol–diesel blends in compression-ignition engines. Energy Conversion and Management 128:66-81. https://doi.org/10.1016/j.enconman.2016.08.072.
     Google Scholar
  17. Sorate, K. A., and Bhale, P.V. (2015). Biodiesel properties and automotive system compatibility issues. Renewable and Sustainable Energy Reviews 41:777-798. https://doi.org/10.1016/j.rser.2014.08.079.
     Google Scholar
  18. Cao, L., Frankel, G., and Sridhar, N. (2013). Effect of chloride on stress corrosion cracking susceptibility of carbon steel in simulated fuel grade ethanol. Electrochimica Acta 104:255-266. https://doi.org/10.1016/j.electacta.2013.04.112.
     Google Scholar
  19. Haseeb, A.S.M.A., Masjuki, H.H., Ann, L.J., and Fazal, M.A. (2010). Corrosion characteristics of copper and leaded bronze in palm biodiesel. Fuel Processing Technology 91(3):329-334. https://doi.org/10.1016/j.fuproc.2009.11.004.
     Google Scholar
  20. Hu, E., Xu, Y., Hu, X., Pan, L., and Jiang, S. (2012). Corrosion behaviors of metals in biodiesel from rapeseed oil and methanol. Renewable Energy 37(1):371-378. https://doi.org/10.1016/j.renene.2011.07.010.
     Google Scholar
  21. Fazal, M.A., Haseeb, A.S.M.A., and Masjuki, H.H. (2013). Corrosion mechanism of copper in palm biodiesel. Corrosion Science 67:50-59. https://doi.org/10.1016/j.corsci.2012.10.006.
     Google Scholar
  22. Surisetty, V. R., Dalai, A. K., and Kozinski, J. (2011). Alcohols as alternative fuels: an overview. Applied Catalysts A-General 404(1-2): 1-11. https://doi.org/10.1016/j.apcata.2011.07.021.
     Google Scholar
  23. Radi, P. A., Vieira, A., Manfroi, L., de Nass, K. C. F., Ramos, M. A. R., Leite, P., Martins, G. V., Jofre, J. B. F., and Vieira, L. (2019). Tribocorrosion and corrosion behavior of stainless steel coated with DLC films in ethanol with different concentrations of water. Ceramics International 45(7)-B:9686-9693. https://doi.org/10.1016/j.ceramint.2019.02.103.
     Google Scholar
  24. Abel, J., and Virtanen, S. (2015). Corrosion of martensitic stainless steel in ethanol-containing gasoline: Influence of contamination by chloride, H2O and acetic acid. Corrosion Science 98:318-326. https://doi.org/10.1016/j.corsci.2015.05.027.
     Google Scholar
  25. Thangavelu, S. K., and Ezhumalai, P. (2017). Corrosion behavior of low carbon steel in bioethanol fuel blends. Solid State Phenomena 263:115-119. https://doi.org/10.4028/www.scientific.net/SSP.263.115.
     Google Scholar
  26. Matejovsky, L., Macak, J., Pospisil, M., Baros, P., Stas, M., and Krausova, A. (2017). Study of corrosion of metallic materials in ethanol-gasoline blends: Application of electrochemical methods. Energy Fuels 31:10880-10889. https://doi.org/10.1021/acs.energyfuels.7b01682.
     Google Scholar
  27. Vargel, V. (2004). Corrosion of Aluminium (p. 648). Paris, France: Elsevier.
     Google Scholar
  28. Beavers, J, Sridhar, N., and Zamarin, C. (2009). Effects of steel microstructure and ethanol-gasoline blend ratio on SCC of ethanol pipelines, In: NACE Corrosion 2009 Conference & Expo, Paper No.: 09532. http://nace.confex.com/nace/2009/webprogram/Paper5465.html.
     Google Scholar
  29. Yoo, Y. H., Park, I. J., Kim, J. G., Kwak, D. H., and Ji, W. S. (2011). Corrosion characteristics of aluminum alloy in bioethanol blended gasoline fuel: Part 1. The corrosion properties of aluminum alloy in high temperature fuels. Fuel 90(3):1208-1214. https://doi.org/10.1016/j.fuel.2010.10.058.
     Google Scholar
  30. Aperador, W., Caballero-Gómez, J., and Delgado, A. (2013). Corrosion behavior of the AA2124 aluminium alloy exposed to ethanol mixtures. International Journal of Electrochemical Science 8(5):6154-6161.
     Google Scholar
  31. Jones, B., Mead, G., Steevens, P., and Timanus, M. (2008). The Effect of E20 on Metals Used in Automotive Fuel System Components. Report No.: 2-22-2008, St. Paul (MN), USA: Minnesota Department of Agriculture.
     Google Scholar
  32. Thangavelu, S. K., Ahmed, A. S., & Ani, F. N. (2016). Impact of metals on corrosive behavior of biodiesel-diesel-ethanol (BDE) alternative fuel. Renewable Energy 94:1-9. https://doi.org/10.1016/j.renene.2016.03.015.
     Google Scholar
  33. Bouazama, S., Costat, J., Desjobertb, J. M., Ben Ali, A., Guenbou, A., and Tabyaoui, M. (2019). Influence of Lavandula dentata essential oil on the corrosion inhibition of carbon steel in 1 M HCl solution. International Journal of Corrosion and Scale Inhibition 8(1):25-41. https://doi.org/10.17675/2305-6894-2019-8-1-3.
     Google Scholar
  34. Vorobyova, V. I., Skiba, M. I., Shakun, A. S., and Nahirniak, S. V. (2019). Relationship between the inhibition and antioxidant properties of the plant and biomass wastes extracts– A review. International Journal of Corrosion and Scale Inhibition 8(2): 150-178. https://doi.org/10.17675/2305-6894-2019-8-2-1.
     Google Scholar
  35. Rana, M., Joshi, S., and Bhattarai, J. (2017). Extract of different plants of Nepalese origin as green corrosion inhibitor for mild steel in 0.5 M NaCl solution. Asian Journal of Chemistry 29(5):1130-1134. https://doi.org/10.14233/ajchem.2017.20449.
     Google Scholar
  36. Akalezi, C. O., Ogukwe, C. E., Ejele, E. A., and Oguzie, E. E. (2016). Corrosion inhibition properties of Gongronema latifollium extract in acidic media. International Journal of Corrosion and Scale Inhibition 5(3):232-247. https://doi.org/10.17675/2305-6894-2016-5-3-4.
     Google Scholar
  37. Hussin, M. H., Kassim, M. J., Razali, N. N., Dahon, N. H., and Nasshorudin, D. (2016). The effect of Tinospora crispa extracts as a natural mild steel corrosion inhibitor in 1 M HCl solution. Arabian Journal of Chemistry 9(1):S616-S624. http://dx.doi.org/10.1016/j.arabjc.2011.07.002.
     Google Scholar
  38. Savita, Mourya, P., Chaubey, N., Singh, V. K., and Singh, M. M. (2016). Eco-friendly inhibitors for copper corrosion in nitric acid: Experimental and theoretical evaluation. Metallurgical and Materials Transactions B 47(1):47-57. https://doi.org/10.1007/s11663-015-0488-6.
     Google Scholar
  39. Verma, C., Ebenso, E. E., Bahadur, I., and Quraishi, M. A. (2018). An overview on plant extracts as environmental sustainable and green corrosion inhibitors for metals and alloys in aggressive corrosive media. Journal of Molecular Liquids 266:577-590. https://doi.org/10.1016/j.molliq.2018.06.110.
     Google Scholar
  40. Al-Turkustani, A. M., Arab, S. T., and Al-Dahiri, R. H. (2010). Aloe plant extract as environmentally friendly inhibitor on the corrosion of aluminum in hydrochloric acid in absence and presence of iodide ions. Modern Applied Science 4(5):105-124. https://doi.org/10.5539/mas.v4n5p105.
     Google Scholar
  41. Fazal, M. A., Haseeb, A. S. M. A., and Masjuki, H. H. (2011). Effect of different corrosion inhibitors on the corrosion of cast iron in palm biodiesel. Fuel Processing Technology 92(11):2154-2159. https://doi.org/10.1016/j.fuproc.2011.06.012.
     Google Scholar
  42. Amgain, K., Subedi, B. N., Joshi, S., and Bhattarai, J. (2018). Investigation on the effect of Tinospora cordifolia plant extract as a green corrosion inhibitor to aluminum and copper in biodiesel and its blend. In: Proceedings of CORCON-2018, Paper No.: PP19, NACE International-Gateway of India Section (NIGIS), Jaipur, India, pp. 1-11. http://dx.doi.org/10.13140/RG.2.2.16898.53448.
     Google Scholar
  43. Ashraful, A. M., Masjuki, H. H., Kalam, M. A., Rashedul, H. K., Sajjad, H., and Abedin, M. J. (2014). Influence of anti-corrosion additive on the performance, emission and engine component wear characteristics of an IDI diesel engine fueled with palm biodiesel. Energy Conversion and Management, 87, 48–57. https://doi.org/10.1016/j.enconman.2014.06.093.
     Google Scholar
  44. Deyab, M. A. (2016). Corrosion inhibition of aluminum in biodiesel by ethanol extracts of Rosemary leaves. Journal of the Taiwan Institute of Chemical Engineers 58:536-541. https://doi.org/10.1016/j.jtice.2015.06.021.
     Google Scholar
  45. Priyatharesini, P. I., Kumar K. P. V., and Kumari, S. S. (2019) Studies of the anticorrosive nature of green Ricinus seed extract with neem biodiesel in copper metal. Biofuels. https://doi.org/10.1080/17597269.2018.1506634.
     Google Scholar
  46. Hoai Vu, N. S., Hien, P. V., Mathesh, M., Thu, V. T. H., and Nam, N. D. (2019). Improved corrosion resistance of steel in ethanol fuel blend by titania nanoparticles and Aganonerion polymorphum leaf extract. ACS Omega 4(1):146-158. https://doi.org/10.1021/acsomega.8b02084.
     Google Scholar
  47. Katuwal, P., Gaire, K. R., and Bhattarai, J. (2018). Study on the effects of ethylenediamine and plant extract as a corrosion inhibitor for mild steel passivation in bioethanol. In: Proceedings of CORCON-2018, Paper No.: MCI-35 (pp 9). NACE International-Gateway of India Section (NIGIS), Jaipur, India. https://www.researchgate.net/publication/328718532.
     Google Scholar
  48. Vu, N. S. H., Hien, P. V., Man, T. V., Hanh Thu, V. T., Tri, M. D., and Nam, N. D. (2018). A study on corrosion inhibitor for mild steel in ethanol fuel blend. Materials 11(1): Article No. 59 (pp. 11). https://doi.org/10.3390/ma11010059.
     Google Scholar
  49. Kunwar, R. M., Shrestha, K. P., and Bussmann, R. W. (2010). Traditional herbal medicine in Far-west Nepal: a pharmacological appraisal. Journal of Ethnobiology and Ethnomedicine 6(35):1-18. https://doi.org/10.1186/1746-4269-6-35.
     Google Scholar
  50. Gautam, L., Shrestha, S., Wagle, P., & Tamrakar, B. (2008). Chemical constituents from Vitex negundo (Linn) of Nepalese origin. Scientific World 6(6): 27-32. https://doi.org/10.3126/sw.v6i6.2630.
     Google Scholar
  51. Chen, J., Fan, C. L., Wang, Y., and Ye, W. C. (2014). A new triterpenoid glycoside from Vitex negundo. Chinese Journal of Natural Medicines 12(3):218-221. https://doi.org/10.1016/S1875-5364(14)60036-4.
     Google Scholar
  52. Patel, J. I., and Deshpande, S. S. (2013). Antieosinophilic activity of various subfractions of leaves of Vitex negundo. International Journal of Nutrition, Pharmacology, Neurologic Diseases 3(2):135-141. https://doi.org/10.4103/2231-0738.112839.
     Google Scholar
  53. Zheng, C. -J., Huang, B. -K., Wang, Y., Ye, Q., Han, T., Zhang, Q. -Y., Zhang, H., and Qin, L. P. (2010). Anti-inflammatory diterpenes from the seeds of Vitex negundo. Bioorganic and Medicinal Chemistry 18(1):175-181. https://doi.org/10.1016/j.bmc.2009.11.004.
     Google Scholar
  54. Moon, S. H., Pandurangan, M., Kim, D. H., Venkatesh, J., Patel, R. V., and Mistry, B. M. (2018). A rich source of potential bioactive compounds with anticancer activities by Catharanthus roseus cambium meristematic stem cell cultures. Journal Ethnopharmacology 217:107-117. https://doi.org/10.1016/j.jep.2018.02.021.
     Google Scholar
  55. Barrales-Cureño, H. J., Reyes, C. R., García, I. V., Valdez, L. G. L., De Jesús, A. G., Ruíz, J. A. C., Herrera, L. M. S., Caballero, M. C. C., Magallón, J. A. S., Perez, J. E., and Montoya, J. M. (2019). Alkaloids of pharmacological importance in Catharanthus roseus. London, UK: IntechOpen Ltd., pp. 18. http://dx.doi.org/10.5772/intechopen.82006.
     Google Scholar
  56. Ghozali, S. Z., Vuanghao, L., and Ahmad, N. H. (2015). Biosynthesis and characterization of silver nanoparticles using Catharanthus roseus leaf extract and its proliferative effects on cancer cell lines. Journal of Nanomedicine and Nanotechnology 6(4):1000305 (pp 6). http://dx.doi.org/10.4172/2157-7439.1000305.
     Google Scholar
  57. Palaniappan, N., Cole, I., Caballero-Briones, F., Manickam, S., Justin Thomas, K. R., and Santos, D. (2020). Experimental and DFT studies on the ultrasonic energy-assisted extraction of the phytochemicals of Catharanthus roseus as green corrosion inhibitors for mild steel in NaCl medium. RSC Advances 10:5399-5411. https://doi.org/10.1039/c9ra08971c.
     Google Scholar
  58. Shahba, R. M. A., Fouda, A. E. E., El-Shenawy, A. E., and Osman, A. S. M. (2016). Effect of Catharanthus roseus (Vince rosea) and turmeric (Curcuma longa) extracts as green corrosion inhibitors for mild steel in 1 M HCl. Materials Sciences and Applications 7:654-671. http://dx.doi.org/10.4236/msa.2016.710053.
     Google Scholar
  59. Kumar, K.N.S., and Hemalatha, S. (2013). Phytochemical evaluation of leaf extracts of Aegle marmelos. International Journal of Development Research 3(7):29-33.
     Google Scholar
  60. Mujeeb, F., Bajpai, P., and Pathak, N. (2014). Phytochemical Evaluation, Antimicrobial Activity and Determination of Bioactive Components from Leaves of Aegle marmelos. BioMed Research International 2014: Article ID 497606 (pp 11). http://dx.doi.org/10.1155/2014/497606.
     Google Scholar
  61. Das, P., Kar, P., Hasnu, S., Nath, S., and Tanti, B. (2017). Phytochemical screening and antioxidant activity of Elaeocarpus serratus L. of Assam. Journal of Pharmacognosy and Phytochemistry 6(4):866-869.
     Google Scholar
  62. Asaduzzaman, Md., Uddin, Md. J., Kader, M.A., Alam, A. H. M. K., Rahman, A. A., Rashid, M., Kato, K., Tanaka, T., Takeda, M., and Sadik, G. (2014). In vitro acetylcholinesterase inhibitory activity and the antioxidant properties of Aegle marmelos leaf extract: Implications for the treatment of Alzheimer's disease. Psychogeriatrics 14(1):1-10. https://doi.org/10.1111/psyg.12031.
     Google Scholar
  63. Begum Hussain, M. S., and Hiremath, M. B. (2020). Evaluation of in vitro antioxidant and anti-inflammatory activities of Aegle marmelos leaf extracts. Asian Journal of Pharmaceutical and Clinical Research 13(2):209-13. https://doi.org/10.22159/ajpcr.2020.v13i2.36870.
     Google Scholar
  64. Siddiqui, M. S., Sharma, G., and Sharma, A. (2020). Anti-diabetic and nephrotoxicity effect of Aegle marmelos leaf on alloxan-induced diabetic rat. International Journal of Research in Pharmaceutical Sciences 11(3):3966-3971. https://doi.org/10.26452/ijrps.v11i3.2588.
     Google Scholar
  65. Shenoy, A. M., Singh, R., Samuel, R. M., Yedle, R., and Shabraya, A. R. (2012). Evaluation of ulcer activity of Aegle marmelos leaves extract. International Journal of Pharmaceutical Sciences and Research 3(5):1498-1501. https://dx.doi.org/10.13040/IJPSR.0975-8232.3(5).1498-01.
     Google Scholar
  66. Baliga, M. S., Thilakchand, K. R., Rai, M. P., Rao, S., and Venkatesh, P. (2013). Aegle marmelos (L.) Correa (Bael) and its phytochemicals in the treatment and prevention of cancer. Integrative Cancer Therapies 12(3):187-196. https://doi.org/10.1177/1534735412451320.
     Google Scholar
  67. Dhankhar, S., Ruhil, S., Balhara, M., Dhankhar, S., and Chhillar, A. K. (2011). Aegle marmelos (Linn.) Correa: a potential source of phytomedicine. Journal of Medicinal Plants Research 5(9):1497-1507.
     Google Scholar
  68. Storrs, A., and Storrs, J. (1990). Trees and Shrubs of Nepal and the Himalayas. Kathmandu, Nepal: Pilgrims Book House, pp. 102-106.
     Google Scholar
  69. Bhatt, B., and Dahal, P. (2019). Antioxidant and antimicrobial efficacy of various solvent extracts of seed of Rudrakshya (Elaeocarpus ganitrus) from Ilam district of Nepal. Journal of Nepal Chemical Society 40:11-18. https://doi.org/10.3126/jncs.v40i0.27272.
     Google Scholar
  70. Okselni, T., Santoni, A., Dharma, A., and Efdi, M. (2018). Determination of antioxidant activity, total phenolic content and total flavonoid content of root, stem bark and leaves of Elaeocarpus mastersii King, Rasayan Journal of Chemistry 11(3):1211-1216. https://dx.doi.org/10.31788/RJC.2018.1133058.
     Google Scholar
  71. Chand, L., Dasgupta, S., Chattopadhyay, S. K., and Ray, A. B. (1977). Chemical investigation of some Elaeocarpus species. Planta Medica 32(2):197-199. https://doi.org/10.1055/s-0028-1097584.
     Google Scholar
  72. Ray, A. B., Chand, L., and Pandey, V. B. (1979). Rudrakine, a new alkaloid from Elaeocarpus ganitrus. Phytochemistry 18(4):700-701. https://doi.org/10.1016/S0031-9422(00)84309-5.
     Google Scholar
  73. Sathish Kumar, T., Shanmugam, S., Palvannan, T., and Bharathi Kumar, V. (2010). Evaluation of antioxidant properties of Elaeocarpus ganitrus Roxb leaves. Iranian Journal of Pharmaceutical Research 7(3):211-215. https://doi.org/10.22037/ijpr.2010.767.
     Google Scholar
  74. Sirajunnisa, S., Fazal Mohamed, M. I., and Subramania, A. (2014). Vitex negundo leaves extract as green inhibitor for the corrosion of aluminum 1 N NaOH solution. Journal of Chemical and Pharmaceutical Research 6:580-588.
     Google Scholar
  75. Bhardwaj, N., Prasad, D., and Haldhar, R. (2018). Study of the Aegle marmelos as a green corrosion inhibitor for mild steel in acidic medium: Experimental and theoretical approach. Journal of Bio- and Tribo-Corrosion 4:61 (pp 10). https://doi.org/10.1007/s40735-018-0178-4.
     Google Scholar
  76. Bhattarai, J., Rana, M., Bhattarai, M. R., Regmi, R., and Joshi, S. (2018). Effect of green corrosion inhibitor of Nepalese origin plants for corrosion control of mild steel in aggressive environments. In: Proceedings of CORCON 2018, Paper No. MCI-17, pp. 12, NIGIS/NACE Publication, Jaipur, India.
     Google Scholar
  77. Bhattarai, J., Akiyama, E., Habazaki, H., Kawashima, A., Asami, K., and Hashimoto, K. (1998). Electrochemical and XPS studies on the passivation behavior of sputter-deposited W-Cr alloys in 12 M HCl solution. Corrosion Science 40(2-3): 155-175. https://doi.org/10.1016/S0010-938X(97)00106-6.
     Google Scholar
  78. Subedi, D. B., Pokharel, D. B., and Bhattarai, J. (2020). Assessment on the effects of sodium salts of tungstate and nitrite as green inhibitor for the corrosion of Cr-5Ni-53W alloy in 0.5 M NaCl solution. International Journal of Metallurgy and Alloys 6(1):25-26
     Google Scholar
  79. Kuznetsov, Yu. I., Andreev, N. N., and Vesely, S. S. (2015). Why we reject papers with calculations of inhibitor adsorption based on data on protective effects? International Journal of Corrosion and Scale Inhibitor 4(2):108-196.
     Google Scholar
  80. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids, Part 1: Solids. Journal of the American Chemical Society 38(11):2221-2295. https://doi.org/10.1021/ja02268a002
     Google Scholar
  81. Tempkin, M. I., and Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalyst. Acta Physicochimica USSR 12:327-356.
     Google Scholar
  82. Ayawei, N., Augustus, A. N., and Wankasi, D. (2017). Modeling and interpretation of adsorption isotherms. Journal of chemistry 2017: Article ID3039817, pp 11. https://doi.org/10.1155/2017/3039817.
     Google Scholar
  83. Wan, Y., Sun, Y., Cai, D., Yin, L., Dai, N., Lei, L., Jiang, Y., and Li, J. (2020). Influence of ethanol on pitting corrosion behavior of stainless steel for bioethanol fermentation tanks. Frontiers of Chemistry 8:529 (pp 11). https://doi.org/10.3389/fchem.2020.00529.
     Google Scholar
  84. Lou, X., and Singh, P. M. (2010). Role of water, acetic acid and chloride on corrosion and pitting behavior of carbon steel in fuel-grade ethanol. Corrosion Science 52:2303-2315. doi:10.1016/j.corsci.2010.03.034.
     Google Scholar
  85. Vijayaraghavan, V., Padmesh, T. V. N., Palanivelu, K., and Velan, M. (2006). Biosorption of nickel (II) ions onto Sargassum wightii: Application of two-parameter and three-parameter isotherm models. Journal of Hazardous Materials B133:304-308. https://doi.org/10.1016/j.jhazmat.2005.10.016.
     Google Scholar
  86. Aharoni, C., and Ungarish, M. (1977). Kinetics of activated chemisorption: Part 2 Theoretical models. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 73:456-464. https://doi.org/10.1039/F19777300456.
     Google Scholar
  87. Amin, M. T., Alazba, A. A., and Shafiq, M. (2015). Adsorptive removal of reactive black 5 from wastewater using bentonite clay: Isotherms, kinetics and thermodynamics. Sustainability 7:15302-15318. https://doi.org/10.3390/su71115302.
     Google Scholar
  88. Dabrowski, A. (2001). Adsorption from theory to practice. Advances in Colloid and Interface Science 93(1-3):135-224. https://doi.org/10.1016/S0001-8686(00)00082-8.
     Google Scholar
  89. Popoola, L. (2019). Organic green corrosion inhibitors (OGCIs): A critical review. Corrosion Reviews 37(2):71-102. https://doi.org/10.1515/corrrev-2018-0058.
     Google Scholar
  90. Patni, N., Agarwal, S., and Shah, P. (2013). Greener approach towards corrosion inhibition. Chinese Journal of Engineering 2013: Article ID 784186 (pp 10). http://dx.doi.org/10.1155/2013/784186.
     Google Scholar
  91. Li, P., Lin, J. Y., Tan, K. L., and Lee, J. Y. (1997). Electrochemical impedance and X-ray photoelectron spectroscopic studies of the inhibition of mild steel corrosion in acids by cyclohexylamine. Electrochimica Acta 42(4):605-615. https://doi.org/10.1016/S0013-4686(96)00205-8.
     Google Scholar
  92. Anaee, R. A., Alzuhairi, M. H., and Abdullah, H. A. (2014). Corrosion inhibition of steel in petroleum medium by Ficus carica leaves extract. Asian Journal of Engineering and Technology 2(3):235-243.
     Google Scholar
  93. Haldhar, R., Prasad, D., Saxena, A., and Kaur, A. (2018). Corrosion resistance of mild steel in 0.5 M H2SO4 solution by plant extract of Alkana tinctoria: Experimental and theoretical studies. The European Physical Journal Plus 133(9): Article No.356. https://doi.org/10.1140/epjp/i2018-12165-0.
     Google Scholar