##plugins.themes.bootstrap3.article.main##

In this article, we describe the synthesis of two new triheterocyclic regioisomers, named 4-({4-[(1H-1,2,4-triazol-1-yl)methyl]-1H-1,2,3-triazol-1-yl}methyl)-4-ethyl-2-phenyl-4,5-dihydrooxazole and 4-({5-[(1H-1,2,4-triazol-1-yl)methyl]-1H-1,2,3-triazol-1-yl}methyl)-4-ethyl-2-phenyl-4,5-dihydrooxazole. The action of 1-(propargyl)-1H-1,2,4-triazole on 4-(azidomethyl)-4-ethyl-2-phenyl-4,5-dihydrooxazole, in a very small quantity of toluene, led after 48 hours at 120 °C to two regioisomers with an overall yield of 90%. The allocation of structures to these two regioisomers was carried out based on a comparative spectroscopic study using 1D NMR of the proton and carbon 13, as well as based on data from the literature concerning the cycloaddition reaction.

References

  1. G. Singh, J. Singh, A. Singh, J. Singh, M. Kumar, K. Gupta, S. Chhibber, “Synthesis, characterization and antibacterial studies of schiff based 1,2,3-triazole bridged silatranes,” Journal of Organometallic Chemistry, vol. 871, pp. 21–27, 2018.
     Google Scholar
  2. S. Fusco, D. Capasso, R. Centore, S. Di Gaetano, E. Parisi, “A new biologically active molecular scaffold: crystal structure of 7-(3-hydroxyphenyl)-4-methyl-2H-[1,2,4]triazolo[3,2-c][1,2,4]triazole and selective anti­proliferative activity of three isomeric triazolo–triazoles,” Acta Crystallographica Section C Structural Chemistry, vol. 75, pp. 1398–1404, 2019.
     Google Scholar
  3. Z. Jiang, J. Gu, C. Wang, S. Wang, N. Liu, Y. Jiang, G. Dong, Y. Wang, Y. Liu, J. Yao, Z. Miao, W. Zhang, C. Sheng, “Design, synthesis and antifungal activity of novel triazole derivatives containing substituted 1,2,3-triazole-piperdine side chains,” European Journal of Medicinal Chemistry, vol. 82, pp. 490–497, 2014.
     Google Scholar
  4. M. M. Slaihim, F. S. R. Al-Suede, M. Khairuddean, M. B. Khadeer Ahamed, A. M. Shah Abdul Majid, “Synthesis, characterization of new derivatives with mono ring system of 1,2,4-triazole scaffold, and their anticancer activities,” Journal of Molecular Structure, vol. 1196, pp. 78-87, 2019.
     Google Scholar
  5. M. A. A. Mohamed, O. A. Abd Allah, A. A. Bekhit, A. M. Kadry, A. M. M. El‐Saghier, “Synthesis and antidiabetic activity of novel triazole derivatives containing amino acids,” J. Heterocyclic Chem., pp. 1–14, 2020.
     Google Scholar
  6. Y. El Bakri, Y. El Aoufir, H. Bourazmi, A. Harmaoui, J. Sebhaoui, A. Ben Ali, H. Oudda, A. Guenbour, M. Tabyaoui, Y. Ramli, E. M. Essassi, “The roles of 3, 4-diamino-5-phenyl-4H-1,2,4-triazole (TR) on the corrosion inhibition of steel in HCl media,” J. Mater. Environ. Sci., vol. 8, pp. 33-43, 2017.
     Google Scholar
  7. R. Huisgen, “1,3‐Dipolare cycloadditionen rückschau und ausblick,” Angew. Chem., vol. 75, pp. 604-637, 1963.
     Google Scholar
  8. T. Curtius, “Ueber die Einwirkung von salpetriger Säure auf salzsauren Glycocolläther,” Berichte Der Deutschen Chemischen Gesellschaft, vol. 16, pp. 2230–2231, 1883.
     Google Scholar
  9. E. Buchner, “Action of ethereal salts of diazoacetic acid on ethereal salts of unsaturated acids,” Chem. Ber., vol. 21, pp. 2637-2647, 1888.
     Google Scholar
  10. A. Padwa and W. H. Pearson, Synthetic applications of 1,3-dipolar cycloaddition chemistry toward heterocycles and natural products. 2002, by John Wiley & Sons, Inc., New York.
     Google Scholar
  11. R. Huisgen, G. Mloston, E. Langhals, “The first two-step 1,3-dipolar cycloadditions: non-stereospecificity,” J. Am. Chem. Soc., vol. 108, pp. 6401–6402, 1986.
     Google Scholar
  12. A. Atmani, A. El Hallaoui, S. El Hajji, M. L. Roumestant, P. Viallefont, “From oxazolines to precursors of amino acids,” Synth. Commun., vol. 21, pp. 2383–2390, 1991.
     Google Scholar
  13. A. Elachqar, A. El Hallaoui, M. L. Roumestant, P. Viallefont, “Synthesis of heterocyclic α-amino phosphonic acids,” Synth. Commun., vol. 24, pp. 1279-1286, 1994.
     Google Scholar
  14. Y. Aouine, H. Faraj, A. Alami, A. El Hallaoui, A. Elachqar, S. El Hajji, A. Kerbal, B. Labriti, J. Martinez, V. Rolland, “Synthesis of new triheterocyclic compounds, precursors of biheterocyclic amino acids,” J. Mar. Chim. Heterocycl., vol. 7, pp. 44–49, 2008.
     Google Scholar
  15. Y. Aouine, H. Faraj, A. Alami, A. El Hallaoui, A. Elachqar, A. Kerbal, “Simple and efficient synthesis of racemic 2-(tert-butoxycarbonylamino)-2-methyl-3-(1H-1,2,4-triazol-1-yl)propanoic acid, a new derivative of β-(1,2,4-triazol-1-yl)alanine,” Molecules, vol. 16, pp. 3380–3390, 2011.
     Google Scholar
  16. Y. Aouine, H. Faraj, A. Alami, A. El Hallaoui, A. Elachqar, S. El Hajji, B. Labriti, A. Kerbal, “Triheterocyclic compounds, oxazolinic precursors of biheterocyclic amino acids, Part II: phenothiazine derivatives and structural study of regioisomers through 1H-15N 2D NMR HMBC,” J. Mar. Chim. Heterocycl., vol. pp. 39-47, 2014.
     Google Scholar
  17. Y. Aouine, A. Alami, A. El Hallaoui, “N,N-dibenzyl-1-(1-[(4-methyl-2-phenyl-4,5-dihydrooxazol-4-yl)methyl)]-1H-1,2,3-triazol-4-yl)methanamine,” MolBank, 2014, M819, 2014.
     Google Scholar
  18. S. Hajib, A. Alami, H. Faraj, Y.Aouine, “4-[(3,5-Dimethyl-1H-pyrazol-1-yl)methyl]-4-methyl-2-phenyl-4,5-dihydrooxazole,” Molbank, 2019, M1074, 2019.
     Google Scholar
  19. K. Dioukhane, A. Alami, Y. Aouine, M. El Omari, L. El Ammari, M. Saadi, A. Assani, R. Ouarsal, “Synthesis, crystal structure and IR spectrum studies of 2-(4-methyl-2-phenyl-4,5-dihydrooxazol-4-ylmethyl)-isoindole-1,3-dione,” Mediterr. J. Chem., vol. 9, pp. 116-124, 2019.
     Google Scholar
  20. S. Achamlale, A. Alami, Y. Aouine, “Structure assignment of N-protected 2-(1H-1,2,3-triazol-1-yl)-glycine derivatives by chemical and spectroscopic methods,” J. Mar. Chim. Heterocycl. vol. 18, pp. 61-69, 2019.
     Google Scholar
  21. S. A. K. Fall, K. Boukallaba, Y. Aouine, A. Alami, H. Faraj, “Synthesis and characterization of new 1,2,3-triazolyl α-amino phophonate derivatives, through 1,3-dipolar cycloaddition reaction,” J. Mar. Chim. Heterocycl., vol. 19, pp. 80-86, 2020.
     Google Scholar
  22. S. A. K. Fall, S. Achamlale, Y. Aouine, A. Nakkabi, H. Faraj, A. Alami, “Diethyl [(4-{(9H-carbazol-9-yl)methyl}-1H-1,2,3-triazol-1-yl)(benzamido)methyl]phosphonate,” Molbank, 2020, M1167, 2020.
     Google Scholar
  23. S. Achamlale, A. Elachqar, A. El Hallaoui, S. El Hajji, A. Alami, M. L. Roumestant, P. Viallefont, “Synthesis of biheterocyclic α-amino phosphonic acid derivatives,” Phosphorus, Sulfur and Silicon, vol. 140, pp. 103-111, 1998.
     Google Scholar
  24. F. Zaid, S. El Hajji, A. El Hallaoui, A. Elachqar, A. Alami, M. L. Roumestant, P. Viallefont, “Synthesis of heterocyclic α-amino aldehyde and α-amino acid analogues of histidine,” Prep. Biochem. And Biotechnol., vol. 28, pp. 155-165, 1998.
     Google Scholar
  25. G. I. Tsypin, T. N. Timofeeva, V. V. Mel’nikov, B. V. Gidaspov, “Structure and reactivity of aliphatic azido compounds. Isomeric composition of the products from cycloaddition of aliphatic azides to acetylene derivatives,” Zh. Org. Khim., vol. 13, pp. 2275-2281, 1977.
     Google Scholar
  26. G. I. Tsypin, V. V. Mel’nikov, T. N. Timofeeva, B. V. Gidaspov, “Structure and reactivity of aliphatic azido compounds. Kinetics of the cycloaddition of alkylazides to acetylene derivatives,” Zh. Org. Khim., vol. 13, pp. 2281-2283, 1977.
     Google Scholar