##plugins.themes.bootstrap3.article.main##

In this work, we highlight the plasma-catalytic effect of gliding arc discharge on the bleaching of azo dye sunset yellow FCF in aqueous solution. The effect has been studied in the presence of tungsten oxide as a catalyst in the glidarc reactor. The catalyst has been synthesized via acid precipitation process. The product obtained was  characterized by X-ray powder diffraction (XRD), Fourier Transform Infrared (FTIR) and Nitrogen Physisorption. The results showed firstly monoclinic structure of WO3 catalyst.  The maximum bleaching rates obtained are 17% and 52.5% after 30 min for initial dye concentration of 25 mg.L-1 for plasma alone and plasma-catalyst, respectively. These results have clearly shown that gliding arc discharge has a double effect, in on hand as a source of hydroxyl radical and on other hands as a source of radiation able to excite the catalyst. The effects of initial pH and photocatalyst loading have been studied.

References

  1. F. M. D. Chequer, G. A. R. de Oliveira, E. R. A. Ferraz, J. C. Cardoso, M. V. B. Zanoni, and D. P. de Oliveira, ‘Textile Dyes: Dyeing Process and Environmental Impact’, Eco-Friendly Textile Dyeing and Finishing, Jan. 2013, doi: 10.5772/53659.
     Google Scholar
  2. K. Singh and S. Arora, ‘Removal of Synthetic Textile Dyes From Wastewaters: A Critical Review on Present Treatment Technologies’, Critical Reviews in Environmental Science and Technology, vol. 41, no. 9, pp. 807–878, Apr. 2011, doi: 10.1080/10643380903218376.
     Google Scholar
  3. G. R. Bamwenda and H. Arakawa, ‘The visible light induced photocatalytic activity of tungsten trioxide powders’, Applied Catalysis A: General, vol. 210, no. 1, pp. 181–191, Mar. 2001, doi: 10.1016/S0926-860X(00)00796-1.
     Google Scholar
  4. X. F. Cheng, W. H. Leng, D. P. Liu, J. Q. Zhang, and C. N. Cao, ‘Enhanced photoelectrocatalytic performance of Zn-doped WO3 photocatalysts for nitrite ions degradation under visible light’, Chemosphere, vol. 68, no. 10, pp. 1976–1984, Aug. 2007, doi: 10.1016/j.chemosphere.2007.02.010.
     Google Scholar
  5. S. J. Hong, H. Jun, P. H. Borse, and J. S. Lee, ‘Size effects of WO3 nanocrystals for photooxidation of water in particulate suspension and photoelectrochemical film systems’, International Journal of Hydrogen Energy, vol. 34, no. 8, pp. 3234–3242, May 2009, doi: 10.1016/j.ijhydene.2009.02.006.
     Google Scholar
  6. D. B. Hernandez-Uresti, D. Sánchez-Martínez, A. Martínez-de la Cruz, S. Sepúlveda-Guzmán, and L. M. Torres-Martínez, ‘Characterization and photocatalytic properties of hexagonal and monoclinic WO3 prepared via microwave-assisted hydrothermal synthesis’, Ceramics International, vol. 40, no. 3, pp. 4767–4775, Apr. 2014, doi: 10.1016/j.ceramint.2013.09.022.
     Google Scholar
  7. I. Turyan, U. O. Krasovec, B. Orel, T. Saraidorov, R. Reisfeld, and D. Mandler, ‘“Writing–Reading–Erasing” on Tungsten Oxide Films Using the Scanning Electrochemical Microscope’, Advanced Materials, vol. 12, no. 5, pp. 330–333, 2000, doi: https://doi.org/10.1002/(SICI)1521-4095(200003)12:5<330::AID-ADMA330>3.0.CO;2-8.
     Google Scholar
  8. N. Aqilah Mohd Razali et al., ‘Palm oil mill effluent treatment using tungsten trioxide: Adsorption and photocatalytic degradation’, Materials Today: Proceedings, Sep. 2020, doi: 10.1016/j.matpr.2020.08.424.
     Google Scholar
  9. F. Amano, E. Ishinaga, and A. Yamakata, ‘Effect of Particle Size on the Photocatalytic Activity of WO3 Particles for Water Oxidation’, J. Phys. Chem. C, vol. 117, no. 44, pp. 22584–22590, Nov. 2013, doi: 10.1021/jp408446u.
     Google Scholar
  10. K. A. Newton and F. E. Osterloh, ‘Size and Morphology of Suspended WO3 Particles Control Photochemical Charge Carrier Extraction and Photocatalytic Water Oxidation Activity’, Top Catal, vol. 59, no. 8, pp. 750–756, May 2016, doi: 10.1007/s11244-016-0549-3.
     Google Scholar
  11. C. Santato, M. Odziemkowski, M. Ulmann, and J. Augustynski, ‘Crystallographically Oriented Mesoporous WO 3 Films: Synthesis, Characterization, and Applications’, J. Am. Chem. Soc., vol. 123, no. 43, pp. 10639–10649, Oct. 2001, doi: 10.1021/ja011315x.
     Google Scholar
  12. J. Shieh, H. M. Feng, M. H. Hon, and H. Y. Juang, ‘WO3 and WTiO thin-film gas sensors prepared by sol–gel dip-coating’, Sensors and Actuators B: Chemical, vol. 86, no. 1, pp. 75–80, Aug. 2002, doi: 10.1016/S0925-4005(02)00150-8.
     Google Scholar
  13. Y.-G. Choi, G. Sakai, K. Shimanoe, N. Miura, and N. Yamazoe, ‘Preparation of aqueous sols of tungsten oxide dihydrate from sodium tungstate by an ion-exchange method’, Sensors and Actuators B: Chemical, vol. 87, no. 1, pp. 63–72, Nov. 2002, doi: 10.1016/S0925-4005(02)00218-6.
     Google Scholar
  14. D. Sánchez-Martínez, C. Gomez-Solis, and L. M. Torres-Martinez, ‘CTAB-assisted ultrasonic synthesis, characterization and photocatalytic properties of WO3’, Materials Research Bulletin, vol. 61, pp. 165–172, Jan. 2015, doi: 10.1016/j.materresbull.2014.10.034.
     Google Scholar
  15. M. Verma, K. P. Singh, and A. Kumar, ‘Reactive magnetron sputtering based synthesis of WO3 nanoparticles and their use for the photocatalytic degradation of dyes’, Solid State Sciences, vol. 99, p. 105847, Jan. 2020, doi: 10.1016/j.solidstatesciences.2019.02.008.
     Google Scholar
  16. G. Jeevitha, R. Abhinayaa, D. Mangalaraj, and N. Ponpandian, ‘Tungsten oxide-graphene oxide (WO3-GO) nanocomposite as an efficient photocatalyst, antibacterial and anticancer agent’, Journal of Physics and Chemistry of Solids, vol. 116, pp. 137–147, May 2018, doi: 10.1016/j.jpcs.2018.01.021.
     Google Scholar
  17. B. Behera and S. Chandra, ‘Synthesis of WO3 nanorods by thermal oxidation technique for NO2 gas sensing application’, Materials Science in Semiconductor Processing, vol. 86, pp. 79–84, Nov. 2018, doi: 10.1016/j.mssp.2018.06.022.
     Google Scholar
  18. N. Bashirom and Q. L. Lee, ‘Synthesis of Visible-Light Active Monoclinic WO3 by Thermal Oxidation of Tungsten Powder for Photoreduction of Cr(VI)’, MSF, vol. 1010, pp. 405–410, Sep. 2020, doi: 10.4028/www.scientific.net/MSF.1010.405.
     Google Scholar
  19. M. Laroussi and F. Leipold, ‘Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure’, International Journal of Mass Spectrometry, vol. 233, no. 1, pp. 81–86, Apr. 2004, doi: 10.1016/j.ijms.2003.11.016.
     Google Scholar
  20. J.-L. Brisset et al., ‘Chemical Reactivity of Discharges and Temporal Post-Discharges in Plasma Treatment of Aqueous Media: Examples of Gliding Discharge Treated Solutions’, Ind. Eng. Chem. Res., vol. 47, no. 16, pp. 5761–5781, Aug. 2008, doi: 10.1021/ie701759y.
     Google Scholar
  21. A. P. Mbouopda et al., ‘New-route synthesis of N-doped TiO2 via exposing the TiCl3 precursor to non-thermal quenched plasma at various times’, Materials Chemistry and Physics, vol. 206, pp. 224–231, Feb. 2018, doi: 10.1016/j.matchemphys.2017.12.019.
     Google Scholar
  22. F. W. Boyom-Tatchemo, F. Devred, G. Ndiffo-Yemeli, S. Laminsi, and E. M. Gaigneaux, ‘Plasma-induced redox reactions synthesis of nanosized α-, γ- and δ-MnO2 catalysts for dye degradation’, Applied Catalysis B: Environmental, vol. 260, p. 118159, Jan. 2020, doi: 10.1016/j.apcatb.2019.118159.
     Google Scholar
  23. F. W. B. Tatchemo et al., ‘Gliding Arc Plasma Synthesis of MnO2 Nanorods for the Plasma-Catalytic Bleaching of Azoïc Amaranth Red Dye’, Top Catal, vol. 60, no. 12, pp. 962–972, Aug. 2017, doi: 10.1007/s11244-017-0761-9.
     Google Scholar
  24. A. Tiya-Djowe, E. Acayanka, G. Lontio-Nkouongfo, S. Laminsi, and E. M. Gaigneaux, ‘Enhanced discolouration of methyl violet 10B in a gliding arc plasma reactor by the maghemite nanoparticles used as heterogeneous catalyst’, Journal of Environmental Chemical Engineering, vol. 3, no. 2, pp. 953–960, Jun. 2015, doi: 10.1016/j.jece.2014.11.016.
     Google Scholar
  25. S. A. Djepang, S. Laminsi, E. Njoyim-Tamungang, C. Ngnintedem, and J.-L. Brisset, ‘Plasma-Chemical and Photo-Catalytic Degradation of Bromophenol Blue’, Chemical and Materials Engineering, vol. 2, no. 1, pp. 14–23, Jan. 2014, doi: 10.13189/cme.2014.020103.
     Google Scholar
  26. D. Moussa, F. Abdelmalek, B. Benstaali, A. Addou, E. Hnatiuc, and J.-L. Brisset, ‘Acidity control of the gliding arc treatments of aqueous solutions: application to pollutant abatement and biodecontamination’, Eur. Phys. J. Appl. Phys., vol. 29, no. 2, Art. no. 2, Feb. 2005, doi: 10.1051/epjap:2004211.
     Google Scholar
  27. J. Deng et al., ‘Magnetic and conducting Fe3O4–cross-linked polyaniline nanoparticles with core–shell structure’, Polymer, vol. 43, no. 8, pp. 2179–2184, Apr. 2002, doi: 10.1016/S0032-3861(02)00046-0.
     Google Scholar
  28. M. H. Sayed Abhudhahir and J. Kandasamy, ‘Photocatalytic effect of manganese doped WO3 and the effect of dopants on degradation of methylene blue’, J Mater Sci: Mater Electron, vol. 26, no. 11, pp. 8307–8314, Nov. 2015, doi: 10.1007/s10854-015-3496-z.
     Google Scholar
  29. M. F. Daniel, B. Desbat, J. C. Lassegues, B. Gerand, and M. Figlarz, ‘Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide tydrates’, Journal of Solid State Chemistry, vol. 67, no. 2, pp. 235–247, Apr. 1987, doi: 10.1016/0022-4596(87)90359-8.
     Google Scholar
  30. U. Opara Krašovec, A. Šurca Vuk, and B. Orel, ‘IR Spectroscopic studies of charged–discharged crystalline WO3 films’, Electrochimica Acta, vol. 46, no. 13, pp. 1921–1929, Apr. 2001, doi: 10.1016/S0013-4686(01)00361-9.
     Google Scholar
  31. O. Rezaee, H. Mahmoudi Chenari, and F. E. Ghodsi, ‘Precipitation synthesis of tungsten oxide nanoparticles: X-ray line broadening analysis and photocatalytic efficiency study’, J Sol-Gel Sci Technol, vol. 80, no. 1, pp. 109–118, Oct. 2016, doi: 10.1007/s10971-016-4073-5.
     Google Scholar
  32. B. Benstaali, P. Boubert, B. G. Cheron, A. Addou, and J. L. Brisset, ‘Density and Rotational Temperature Measurements of the OH° and NO° Radicals Produced by a Gliding Arc in Humid Air’, Plasma Chemistry and Plasma Processing, vol. 22, no. 4, pp. 553–571, Dec. 2002, doi: 10.1023/A:1021371529955.
     Google Scholar
  33. M. Qamar, M. A. Gondal, K. Hayat, Z. H. Yamani, and K. Al-Hooshani, ‘Laser-induced removal of a dye C.I. Acid Red 87 using n-type WO3 semiconductor catalyst’, Journal of Hazardous Materials, vol. 170, no. 2, pp. 584–589, Oct. 2009, doi: 10.1016/j.jhazmat.2009.05.099.
     Google Scholar
  34. K. Hayat, M. A. Gondal, M. M. Khaled, Z. H. Yamani, and S. Ahmed, ‘Laser induced photocatalytic degradation of hazardous dye (Safranin-O) using self synthesized nanocrystalline WO3’, Journal of Hazardous Materials, vol. 186, no. 2, pp. 1226–1233, Feb. 2011, doi: 10.1016/j.jhazmat.2010.11.133.
     Google Scholar
  35. A. Gnanaprakasam, V. M. Sivakumar, and M. Thirumarimurugan, ‘Influencing Parameters in the Photocatalytic Degradation of Organic Effluent via Nanometal Oxide Catalyst: A Review’, Indian Journal of Materials Science, vol. 2015, pp. 1–16, Sep. 2015, doi: 10.1155/2015/601827.
     Google Scholar