##plugins.themes.bootstrap3.article.main##

Density Functional Theory (DFT) plays a vital role in the study of organic materials. Lawsonia inermis is identified among the promising organic candidates to replace toxic and expensive solar cell material. The present study reported step by step computational procedure used to exposed the beauty of the organic solar cell candidate using Gaussian09 software. Stability check, optimization at different basis set, Homo-Lumo, band gap and Infrared spectrum (IR) at different medium were reported. It was found that the ground state energy, Homo-Lumo at both vacuum and Medium, band gaps, were found to be -16607.3717574 eV, -7.431 eV -3.584 eV (Vacuum) -7.311 eV -3.515 eV (Medium) 3.847 eV (Vacuum) 3.79 eV (Medium) respectively. For the IR it was found that there is shift and increase in the intensity due to the solvent effect on the material. These results were compared with the literature and are in agreement. It can be concluded that the Lawsonia inermis at solvent medium can enhance smooth and easier electron hole transport by looking at the band gap and hence it can and will be a good candidate organic material for solar cell production.

References

  1. D. Prabhu and P. Rao, “Coriandrum sativum L.—a novel green inhibitor for the corrosion inhibition of aluminium in 1.0 M phosphoric acid solution,” Journal of Environmental Chemical Engineering, vol. 1, no. 4, pp.676–683, 2013.
     Google Scholar
  2. S. Ali, T. Hussain, and R. Nawaz, “Optimization of alkaline extraction of natural dye from Henna leaves and its dyeing on cotton by exhaust method,”Journal of Cleaner Production, vol. 17, no. 1, pp. 61–66, 2009.
     Google Scholar
  3. F. Suedile, F. Robert, C. Roos, and M. Lebrini, “Corrosion inhibition of zinc by Mansoa alliaceaplant extract in sodium chloride media: extraction, characterization and electrochemi-cal studies,” Electrochimica Acta, vol. 133, pp. 631–638, 2014.
     Google Scholar
  4. O. Moullet, J. Dreyer, Biochem. J.1994, 300, 99-106.
     Google Scholar
  5. K. Tanaka, R. Tamamushi, T. Ogawa, J. Technol. Biotech. 1985, 35B, 191-197.
     Google Scholar
  6. N. R. Dhumal, A. V. Todkary, S. Y. Rane, S. P. Gejji, Theor. Chem. Acc.2005 113, 161-166.
     Google Scholar
  7. D. Jacquemin, E. A. Perpète, G. E. Scuseria, I. Ciofini, C. Adamo, J. Chem. Theory Comput. 2008, 4, 123-135.
     Google Scholar
  8. K. A. Nguyen, J. Kennel, R. Patcher, J. Chem. Phys.2002, 117, 7128-7136.
     Google Scholar
  9. D. Jacquemin, J. Preat, V. Wathelet, E. A. Perpète, Chem. Phys. 2006, 328, 324-332.
     Google Scholar
  10. E. A. Perpète, C. Lambert, V. Wathlet, J. Preat, D.Jacquemin, Spectrochim. Acta Part A2007, 68, 1326-1333.
     Google Scholar
  11. F. Labat, T. Le Bahers, I. Cliofini, C. Adamo, Acc. Chem. Res. 2012, 45, 1268-1277.
     Google Scholar
  12. A. Adegoke, J. Wang, J. Leszczynski, Chem. Phys. Lett.2012, 532, 63-67.
     Google Scholar
  13. P. Ekanayake, M. R. R. Kooh, N.T.R.N. Kumara, A. Lim, M. I. Petra, V. N. Y. C. Ming, Chem. Phys. Lett.2013, 585, 121- 75 127.
     Google Scholar
  14. Y. Y. Tan, W. H. Tu, S. Manzhos, Chem. Phys. Lett. 2014, 593, 14-19.
     Google Scholar
  15. K. E. Jasim, S. Al-Dallal, A. M. Hassan, J. Nanotech. 2012, 1-6.
     Google Scholar
  16. M. Moral, G. García, A. Garzón, J. M. Granadino-Roldán, M. A. Fox, D. S. Yufit, A. Peñas, M. Melguizo, M. Fernández-Gómez, J. Phys. Chem. C 2014, 118, 26427-26439.
     Google Scholar
  17. Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd,E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin,R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
     Google Scholar
  18. May Win Han, Piyasiri Ekanayake, Lim Chee Ming, and Voo Nyuk Yoong, DFT/TD-DFT Studies on the Lawsone (Henna) as a Photosensitizer for Dye- Sensitized Solar Cells. Applied Mechanics and Materials. ISSN: 1662-7482, Vols. 789-790, pp 56-60. 2015. doi:10.4028/www.scientific.net/AMM.789-790.56.
     Google Scholar
  19. Shubhangi S. Khadtare, Sandesh R. Jadkar, Sunita Salunke-Gawali and Habib M.Pathan, Lawsone Sensitized ZnO Photoelectrodes for Dye Sensitized Solar Cells. Journal of Nano Research Vol. 24 (2013) pp 140-145.
     Google Scholar
  20. Lakshmi R., Krishnakumar G., Lyjo K. Joseph and K. S. Sreelatha, Jinchu I., Lawsone dye complex: an efficient sensitizer for Dye Sensitized Solar Cell. International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) – 2016.
     Google Scholar
  21. Gans, P. (1975) Vibrating Molecules: An Introduction to the Interpretation of Infrared and Raman Spectra, Chapman & Hall, London. Pp 126-133.
     Google Scholar
  22. Coates, J. (2000). Interpretation of Infrared Spectra: A Practical Approach Encyclopedia of Analytical Chemistry R.A. Meyers (Ed.) O John Wiley & Sons Ltd, Chichester. Pp.10815–10837.
     Google Scholar
  23. Colthrup, NB., Daly, LH., and Wiberley, SE. (1990). Introduction to Infrared and Raman Spectroscopy, Academic Press, San Diego, CA, Pp 1–73.
     Google Scholar
  24. Yau Datti and Bilkisu Mukhtar (2016) Determination of the concentrations of Cu, Zn and Fe in five selected leafy vegetables used as relish in Kano State, Nigeria. World Journal of Advanced Research and Reviews, 07(02), 056–062.
     Google Scholar
  25. F. Zulkifli, Nora’aini Ali, M. Sukeri M. Yusof, Wan M. Khairul, Rafizah Rahamathullah, M. I. N. Isa, and W. B. WanNik (2017) The Effect of Concentration ofLawsonia inermisas a Corrosion Inhibitor for Aluminum Alloy in Seawater. Hindawi Advances in Physical Chemistry Volume 2017, Article ID 8521623,12 pages. https://doi.org/10.1155/2017/8521623.
     Google Scholar
  26. Mirella Fonda Maahury, Muhamad A. Martoprawiro (2019) Computational calculation potency of lawsone and its Derivatives as active material in dye-sensitized solar cell. Jurnal Kimia Mulawarman Volume 17 Nomor Kimia FMIPA Unmul. P-ISSN 1693-5616.
     Google Scholar
  27. Khalil EbrahimJasim, Shawqi Al-Dallal, and Awatif M. Hassan (2012) Henna (Lawsonia inermisL.) Dye-Sensitized Nanocrystalline Titania Solar Cell. Hindawi Publishing Corporation Journal of Nanotechnology, Article ID 167128,6pages. doi:10.1155/2012/167128.
     Google Scholar