Evaluation of the Antibacterial Activity of 5-(thiophen-2-yl)-1H-tetrazole and Its Oxime Derivative against ATCC Reference Strains and Strains Isolated from the Hospital Environment of a Provincial Public Hospital in the City of Fez
##plugins.themes.bootstrap3.article.main##
Bacterial resistance to antibiotics and disinfectants has become a real concern. The hospital presents a favorable environment for the colonization and development of bacteria resistant to antibiotics and disinfectants. The search for new antimicrobial compounds is essential to combat this phenomenon. Tetrazole derivatives may represent a solution due to their interesting antibacterial activity. In this work, two tetrazole derivatives; thiophene-2-carbaldehyde (T2C) and 5-(thiophen-2-yl)-1H-tetrazole (5TPh-1HT), were evaluated for their antibacterial activities against a set of reference strains and strains isolated from the hospital environment. The antibacterial effect was studied by the disc diffusion method and by determination of MIC and MBC. The 5-(thiophen-2-yl)-1H-tetrazole (5TPh-1HT) has a broader spectrum of activity than its oxime derivative (T2C). The latter has bactericidal activity only on gram-negative Escherichia coli, Pseudomonas aeruginosa with MICs ranging from 0.62 mg/ml to 2.5 mg/ml, while 5TPh-1HT has a bactericidal effect on all strains with MICs ranging from 0.62 mg/ml to 1.25 mg/ml. Both products have a significant inhibitory activity on the strains tested in particular E. coli H, S. aureus H, P. aeruginosa and Streptococcus spp A. It was found that these activities vary depending on the microbial strain tested and the product applied.
References
-
Diakaria, G. Etude de la prévalence des infections nosocomiales d’origine bactérienne dans le service de néphrologie et dans l’unitéd’hémodialyse à l’Hôpital du Point G, Faculté de Médecine de Pharmacie et D’Odonto- Stomatologie, 2002.
Google Scholar
1
-
El Rhazi, K., Elfakir, S., Berraho, M., Tachfouti, N., Serhier, Z., Kanjaa, C., Nejjari, C. Prévalence et facteurs de risque des infections nosocomiales au CHU Hassan II de Fès (Maroc). La Revue de Santé de la Méditerranée Orientale, 2007, 13 (1), 56-63. https://doi.org/10.48408/IMIST.PRSM/mm-v30i1.1149.
Google Scholar
2
-
Bekkari, H., Touijer, H., Berrada, S., Ettaybi, M., Benchemsi, N., Maniar, S. and El Ouali Lalami, A. Surveillance of bacteriological quality and resistance to desinfectants and antibiotics in a provincial hospital in Morocco. J. Mater. Environ. Sci, 2016, 7, 1, 1-8.
Google Scholar
3
-
Joly, B., Freney, J. La résistance des bactéries aux antiseptiques et désinfectants. Hygiènes, 1996, 15: 39-46.
Google Scholar
4
-
Matysiak, J., Niewiadomy, A., Krajewska-Kułak, E. Synthesis of some 1-(2,4- dihydroxythiobenzoyl)imidazoles, -imidazolines and -tetrazoles and their potent activity against Candida species. Il Farmaco, 2002, 58 (6), 455-461. https://doi.org/10.1016/S0014-827X(03)00046-6.
Google Scholar
5
-
Chang, C.S., Lin, Y.T., Shih, S.R., Lee, C.C., Lee, Y.C., Tai, C.L., Tseng, S.N., Chern, J.H. Design, Synthesis, and Antipicornavirus Activity of 1-[5-(4 Arylphenoxy) alkyl]-3-pyridin-4- ylimidazolidin-2-one Derivatives. Journal of Medicinal Chemistry, 2005, 48 (10), 3522–3535. https://doi.org/10.1021/jm050033v.
Google Scholar
6
-
Walker, M. A., Johnson, T., Ma, Z., Banville, J., Remillard, R., Kim, O., Zhang, Y., Staab, A., Wong, H., Torri, A., Samanta, H., Lin, Z., Deminie, C., Terry, B., Krystal, M., Meanwell N. Triketoacid inhibitors of HIV-integrase: A new chemotype useful for probing the integrase pharmacophore. Bioorganic & Medicinal Chemistry Letters, 2006, 16, 11, 2920-2924. https://doi:10.1016/j.bmcl.2006.08.075.
Google Scholar
7
-
Bhaskar, V.H., Mohite, P.B. Synthesis, characterization and evaluation of anticancer activity of some tetrazole derivatives. Journal of Optoelectronics and Biomedical Materials, 2010, 2(4), 249 – 259.
Google Scholar
8
-
Zhang, J.Y., Wang, S., Ba, Y.Y., Xu, Z. Tetrazole hybrids with potential anticancer activity. Eur. J. Med. Chem. 2019, 178, 341. https://doi.org/10.1016/j.ejmech.2019.05.071.
Google Scholar
9
-
Wang, S.Q., Wang, Y.F., Xu, Z. Tetrazole hybrids and their antifungal activities. Eur. J. Med. Chem. 2019, 170, 225. https://doi.org/10.1016/j.ejmech.2019.03.023.
Google Scholar
10
-
Roh, J., Karabanovich, G., Vlčková, H., Carazo, A., Němeček, J., Sychra, P., Valášková, L., Pavliš, O., Stolaříková, J., Klimešová, V., Vávrová, K., Pávek, P., Hrabálek, A. Development of water-soluble 3,5-dinitrophenyl tetrazole and oxadiazole antitubercular agents. Bioorg. Med. Chem. 2017, 25(20), 5468. https://doi.org/10.1016/j.bmc.2017.08.010.
Google Scholar
11
-
Gao, C., Chang, L., Xu, Z., Yan, X.F., Ding, C., Zhao, F., Wu, X., Feng, L.S. Recent advances of tetrazole derivatives as potential anti-tubercular and anti-malarial agents. Eur. J. Med. Chem. 2019, 163, 404. https://doi.org/10.1016/j.ejmech.2018.12.001.
Google Scholar
12
-
Zhan, P., Li, Z., Liu, X., Clercq, E.D. Sulfanyltriazole/tetrazoles: A Promising Class of HIV-1 NNRTIs. Mini Rev. Med. Chem. 2009, 9(8), 1014. https://doi.org/10.2174/138955709788681618.
Google Scholar
13
-
Niranjan, K., Nitin, K., Anoop, K., Umesh, K.S. Tetrazoles: Synthesis and Biological Activity. Immun., Endoc. & Metab. Agents in Med. Chem, 2018, 18, 1-19. hptts://doi.org/10.2174/1871522218666180525100850.
Google Scholar
14
-
Labib, M.B., Fayez, A.M., EL-Nahass, E.S., Awadallah, M., Halim, P.A. Novel tetrazole-based selective COX-2 inhibitors: Design, synthesis, anti-inflammatory activity, evaluation of PGE2, TNF-α, IL-6 and histopathological study. Bioorganic Chemistry, 2020, 104308. hptts://doi.org/10.1016/j.bioorg.2020.104308.
Google Scholar
15
-
Dhiman, N., Kaur, K., Jaitak, V. Tetrazoles as Anticancer Agents: A Review on Synthetic Strategies, Mechanism of Action and SAR Studies. Bioorganic & Medicinal Chemistry, 2020, 28,115599. hptts://doi.org/10.1016/j.bmc.2020.115599.
Google Scholar
16
-
Ahmadi, A., Sedaghat, T., Motamedi, H., Azadi, R. Anchoring of Cu (II)-Schiff base complex on magnetic mesoporous silica nanoparticles: catalytic efficacy in one-pot synthesis of 5-substituted-1H-tetrazoles, antibacterial activity evaluation and immobilization of α-amylase. Applied Organometallic Chemistry, 2020, 34. hptts://doi.org/10.1002/aoc.5572.
Google Scholar
17
-
Gao, F., Xiao, J., Huang, G. Current scenario of tetrazole hybrids for antibacterial activity. European Journal of Medicinal Chemistry, 2019, 184, 111744. hptts://doi.org/10.1016/j.ejmech.2019.111744.
Google Scholar
18
-
Salahuddin, M., Singh, S., Shantakumar, S.M. Synthesis of Some Novel Benzo Thieno [2, 3-d] pyrimidines. Rasayan journal of chemistry, 2009, 2 (1):167-173.
Google Scholar
19
-
Mosaad, M., el domany, R., abd el hameed, R. Synthesis of certain pyrrole derivatives as antimicrobial agents. Acta Pharm, 2009, 59, 145–158. https://doi.org/10.2478/v10007-009-0016-9.
Google Scholar
20
-
Mohite, P.B., Bhaskar, V.H. Potential Pharmacological Activities of Tetrazoles in The New Millennium. International Journal of PharmTech Research, 2011, 3 (3), 1557-1566. http://www.sphinxsai.com/Vol.3No.3/pharm/pdf/PT=51(1557-1566)JS11.pdf.
Google Scholar
21
-
Kleemann, A., Engel, J. In ‘Pharmaceutical Substances: Syntheses, Patents, Applications’, Eds. Thieme, Stutggart. http://vlib.kmu.ac.ir/kmu/handle/kmu/67899.
Google Scholar
22
-
Dioukhane, K., Touijer, H., Alami, A., Bekkari, H., Benchemsi, N. Study of the antibacterialeffect of 5-(4-chlorophenyl)-1H-tetrazole and its oxime precurs oragainststrainsisolated from the hospitalenvironment. Journal of Medicinal and Chemical Sciences, 2018, 1(1), 18-22. hptts://doi.org/10.26655/jmchemsci.2018.6.5.
Google Scholar
23
-
Dioukhane, K. Moussaid, S., Achamlale, S., Alami, A., Kabbour, M.R., Aouine, Y., Faraj, H., Bouksaim, M., Gaye, M.L., Comparative study of antibacterial activity of some biheterocyclic “triazolic-tetrazolic” a-aminoacid derivatives against strains. Moroccan Journal of Heterocyclic Chemistry, 2020, 19(2), 87-91. https://doi.org/10.48369/IMIST.PRSM/jmch-v19i2.23360.
Google Scholar
24
-
Alami, A., El Hallaoui, A., El Achqar, A., Roumestant, M. L., Viallefont, Ph. The use of 5-substituted tetrazoles in a Synthesis of heterocyclic α-amino esters. Bull. Soc. Chim. Belg., 1996, 105 (12), 769.
Google Scholar
25
-
Mohite, P.B., Pandhare, R.B., Khanages, G., Bhaskar, V.H. Synthetis and in vitro antimicrobial activity of some novel chalcones containing 5-phenyltetrazole. acta Pharmaceutica Sciencia, 2010, 52, 505-510.
Google Scholar
26
-
Kategaonkar, A.H., Pokalwar, R.U., Sonar, S.S., Gawali, V.U., Shingate, B.B., Shingare, M.S. Synthesis, in vitro antibacterial and antifungal evaluations of new α-hydroxyphosphonate and new α- acetoxyphosphonate derivatives of tetrazolo [1, 5-a] quinoline. European Journal of Medicinal Chemistry, 2010, 45, 1128–1132. https://doi.org/10.1016/j.ejmech.2009.12.013.
Google Scholar
27
-
Dhayanithi, V., Shafisayed, S., Kumaran, K., Sankar, K.J., Ragavan, R. V., Goud, K.P. S., Kumari, N.S., Pati, H.N. Synthesis of selected 5-thio-substituted tetrazole derivatives and evaluation of their antibacterial and antifungal activities. J. Serb. Chem. Soc, 2011, 76 (2), 165-175. https://doi.org/10.2298/JSC090421001D.
Google Scholar
28
-
Yildirir, Y., Faruk, M.U., Naki, C., Ozkan, H., Yavuz, S., Disli, A., Ozturk, S., Turke, L. The synthesis and investigation of the antimicrobial activity of some new phenylselanyl-1-(toluene-4- sulfonyl)-1H-tetrazole derivatives. Med Chem Res, 2009, 18, 91–97. https://doi.org/10.1007/s00044-008-9110-7.
Google Scholar
29
-
Morjan, R.Y., El-Attar, N.H., Abu-Teimb, O.S., Ulrich, M., Awadallaha, A.M., Mkadmh, A.M., Elmanama, A.A., Raftery, J., Abu-Awwad, F.M., Yaseen, Z. J., Elqidrea, A.F., Gardiner, J.M. Synthesis, antibacterial and QSAR evaluation of 5-oxo and 5-thio derivatives of 1, 4-disubstituted tétrazoles. Bioorganic & Medicinal Chemistry Letters, 2015, 25, 4024-4028. https://doi.org/10.1016/j.bmcl.2015.04.070.
Google Scholar
30
-
Dhayanithi, V., Shafisayed, S., Ramasamy, V.R, Kumaran, K., Sankar, J., Raguraman, K. G., Nalilu, S.K., Pati, H.N. Synthesis and evaluation of a series of 1-substituted tétrazole derivatives as antimicrobial agents. Org. Commun, 2010, 3 (3), 45-56.
Google Scholar
31
-
Rostom, S.A.F., Ashour, H.M.A., Abd El Razik, H.A., Abd El Fattah, A.H.F, El-Din, N.N. Azole antimicrobial pharmacophore-based tetrazoles: Synthesis and biological evaluation as potential antimicrobial and anticonvulsant agents. Bioorganic & Medicinal Chemistry, 2009, 17: 2410–2422. https://doi.org/10.1016/j.bmc.2009.02.004.
Google Scholar
32
-
Ramiz, M.M., Abdel-Rahman, A.A.H. Antimicrobial activity of newly synthesized 2,5-disubstiteted 1,3,4-thiodiazole derivatives. Bull. Korean Chem. Soc, 2011, 32, 4227-42320. http://dx.doi.org/10.5012/bkcs.2011.32.12.4227.
Google Scholar
33
-
Rao, S.N., Raviskankar, T., Latha, J. and SudhakarBabu, K. Synthesis, characterization and antimicrobial activity of novel biphenyl tétrazoles. Der Pharma Chemico, 2012, 4 (3), 1093-1103.
Google Scholar
34
-
EUCAST, EUropean Committee on Antimicrobial suscuptibility Testing, 2015. Comité de l’antibiogramme de la Société Française de Microbiologie, recommandations; V1.0 Janvier 2015.
Google Scholar
35
-
CLSI, Clinical and Laboratory Standards Institute, 2012. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard-ninth edition. 32 (2): M02-A9.
Google Scholar
36
-
Demirbas, N., Karaoglu, S.A., Demirbas, A., Sancak, K. Synthesis and antimicrobial activities of some new 1-(5-phenylamino-[1,3,4]thiadiazol-2-yl)methyl-5- oxo-[1,2,4]triazoles and 1-(4-phenyl-5-thioxo-[1,2,4]triazol-3-yl)methyl-5-oxo- [1,2,4]triazoles derivatives. European Journal of Medicinal Chemistry, 2010, 39, 793–804. https://doi.org/10.1016/j.ejmech.2004.06.007.
Google Scholar
37
-
Hellal, A., Chafaa, S., Chafai, N. Synthesis, antimicrobial and antifungal screening of three new of Alpha-aminophosphoric acids. International Journal of Scientific and Engineering Research, 2015, 6 (8),2229-5518.
Google Scholar
38
-
Delarras, C., Microbiologie, 90 heures de travaux pratiques. G. Morin Europe, Levallois-Perret, ISBN: 2-910749-07-X, 1998, 169-178.
Google Scholar
39
-
Berche P., Gaillard J.L., Simonet M. In Nosocomial Infections Caused by bactearia and Their Prevention in bacteriology. 1988; Edited by Flammation Medecine Sciences; 64-71.
Google Scholar
40
-
Gatsing D., Tchakoute V., Ngamga D., Kuiate J.K., Tamokou J.D.D. In vitro antibacterial activity of crinum purpurascens herb. Leaf extract against the Salmonella species causing typhoid fever and its toxicology evaluation; Iran. J. Med. Sci.; 2009, 34: 126-137.
Google Scholar
41
Most read articles by the same author(s)
-
Khadim Dioukhane,
Younas Aouine,
Salaheddine Boukhssas,
Asmae Nakkabi,
Hassane Faraj,
Anouar Alami,
Synthesis and Characterization of a Novel Biheterocyclic -amino Acid Precursor of the Triazole-Tetrazole Type, via the Copper (I) Catalyzed Alkyne-Azide Cycloaddition Reaction (CuAAC) , European Journal of Advanced Chemistry Research: Vol. 2 No. 2 (2021) -
Oumaima Karai,
Sara Hajib,
Serigne Abdou Khadir Fall,
Salaheddine Boukhssas,
Khadim Dioukhane,
Younas Aouine,
Brahim Labriti,
Hassane Faraj,
Anouar Alami,
Comparative Study of Synthesis, Structural and Antioxidant Activity In Vitro of Some New Carboxylic α,α-diaminodiesters Derivatives , European Journal of Advanced Chemistry Research: Vol. 2 No. 3 (2021)