##plugins.themes.bootstrap3.article.main##

Bacterial resistance to antibiotics and disinfectants has become a real concern. The hospital presents a favorable environment for the colonization and development of bacteria resistant to antibiotics and disinfectants. The search for new antimicrobial compounds is essential to combat this phenomenon. Tetrazole derivatives may represent a solution due to their interesting antibacterial activity. In this work, two tetrazole derivatives; thiophene-2-carbaldehyde (T2C) and 5-(thiophen-2-yl)-1H-tetrazole (5TPh-1HT), were evaluated for their antibacterial activities against a set of reference strains and strains isolated from the hospital environment. The antibacterial effect was studied by the disc diffusion method and by determination of MIC and MBC. The 5-(thiophen-2-yl)-1H-tetrazole (5TPh-1HT) has a broader spectrum of activity than its oxime derivative (T2C). The latter has bactericidal activity only on gram-negative Escherichia coli, Pseudomonas aeruginosa with MICs ranging from 0.62 mg/ml to 2.5 mg/ml, while 5TPh-1HT has a bactericidal effect on all strains with MICs ranging from 0.62 mg/ml to 1.25 mg/ml. Both products have a significant inhibitory activity on the strains tested in particular E. coli H, S. aureus H, P. aeruginosa and Streptococcus spp A. It was found that these activities vary depending on the microbial strain tested and the product applied.

References

  1. Diakaria, G. Etude de la prévalence des infections nosocomiales d’origine bactérienne dans le service de néphrologie et dans l’unitéd’hémodialyse à l’Hôpital du Point G, Faculté de Médecine de Pharmacie et D’Odonto- Stomatologie, 2002.
     Google Scholar
  2. El Rhazi, K., Elfakir, S., Berraho, M., Tachfouti, N., Serhier, Z., Kanjaa, C., Nejjari, C. Prévalence et facteurs de risque des infections nosocomiales au CHU Hassan II de Fès (Maroc). La Revue de Santé de la Méditerranée Orientale, 2007, 13 (1), 56-63. https://doi.org/10.48408/IMIST.PRSM/mm-v30i1.1149.
     Google Scholar
  3. Bekkari, H., Touijer, H., Berrada, S., Ettaybi, M., Benchemsi, N., Maniar, S. and El Ouali Lalami, A. Surveillance of bacteriological quality and resistance to desinfectants and antibiotics in a provincial hospital in Morocco. J. Mater. Environ. Sci, 2016, 7, 1, 1-8.
     Google Scholar
  4. Joly, B., Freney, J. La résistance des bactéries aux antiseptiques et désinfectants. Hygiènes, 1996, 15: 39-46.
     Google Scholar
  5. Matysiak, J., Niewiadomy, A., Krajewska-Kułak, E. Synthesis of some 1-(2,4- dihydroxythiobenzoyl)imidazoles, -imidazolines and -tetrazoles and their potent activity against Candida species. Il Farmaco, 2002, 58 (6), 455-461. https://doi.org/10.1016/S0014-827X(03)00046-6.
     Google Scholar
  6. Chang, C.S., Lin, Y.T., Shih, S.R., Lee, C.C., Lee, Y.C., Tai, C.L., Tseng, S.N., Chern, J.H. Design, Synthesis, and Antipicornavirus Activity of 1-[5-(4 Arylphenoxy) alkyl]-3-pyridin-4- ylimidazolidin-2-one Derivatives. Journal of Medicinal Chemistry, 2005, 48 (10), 3522–3535. https://doi.org/10.1021/jm050033v.
     Google Scholar
  7. Walker, M. A., Johnson, T., Ma, Z., Banville, J., Remillard, R., Kim, O., Zhang, Y., Staab, A., Wong, H., Torri, A., Samanta, H., Lin, Z., Deminie, C., Terry, B., Krystal, M., Meanwell N. Triketoacid inhibitors of HIV-integrase: A new chemotype useful for probing the integrase pharmacophore. Bioorganic & Medicinal Chemistry Letters, 2006, 16, 11, 2920-2924. https://doi:10.1016/j.bmcl.2006.08.075.
     Google Scholar
  8. Bhaskar, V.H., Mohite, P.B. Synthesis, characterization and evaluation of anticancer activity of some tetrazole derivatives. Journal of Optoelectronics and Biomedical Materials, 2010, 2(4), 249 – 259.
     Google Scholar
  9. Zhang, J.Y., Wang, S., Ba, Y.Y., Xu, Z. Tetrazole hybrids with potential anticancer activity. Eur. J. Med. Chem. 2019, 178, 341. https://doi.org/10.1016/j.ejmech.2019.05.071.
     Google Scholar
  10. Wang, S.Q., Wang, Y.F., Xu, Z. Tetrazole hybrids and their antifungal activities. Eur. J. Med. Chem. 2019, 170, 225. https://doi.org/10.1016/j.ejmech.2019.03.023.
     Google Scholar
  11. Roh, J., Karabanovich, G., Vlčková, H., Carazo, A., Němeček, J., Sychra, P., Valášková, L., Pavliš, O., Stolaříková, J., Klimešová, V., Vávrová, K., Pávek, P., Hrabálek, A. Development of water-soluble 3,5-dinitrophenyl tetrazole and oxadiazole antitubercular agents. Bioorg. Med. Chem. 2017, 25(20), 5468. https://doi.org/10.1016/j.bmc.2017.08.010.
     Google Scholar
  12. Gao, C., Chang, L., Xu, Z., Yan, X.F., Ding, C., Zhao, F., Wu, X., Feng, L.S. Recent advances of tetrazole derivatives as potential anti-tubercular and anti-malarial agents. Eur. J. Med. Chem. 2019, 163, 404. https://doi.org/10.1016/j.ejmech.2018.12.001.
     Google Scholar
  13. Zhan, P., Li, Z., Liu, X., Clercq, E.D. Sulfanyltriazole/tetrazoles: A Promising Class of HIV-1 NNRTIs. Mini Rev. Med. Chem. 2009, 9(8), 1014. https://doi.org/10.2174/138955709788681618.
     Google Scholar
  14. Niranjan, K., Nitin, K., Anoop, K., Umesh, K.S. Tetrazoles: Synthesis and Biological Activity. Immun., Endoc. & Metab. Agents in Med. Chem, 2018, 18, 1-19. hptts://doi.org/10.2174/1871522218666180525100850.
     Google Scholar
  15. Labib, M.B., Fayez, A.M., EL-Nahass, E.S., Awadallah, M., Halim, P.A. Novel tetrazole-based selective COX-2 inhibitors: Design, synthesis, anti-inflammatory activity, evaluation of PGE2, TNF-α, IL-6 and histopathological study. Bioorganic Chemistry, 2020, 104308. hptts://doi.org/10.1016/j.bioorg.2020.104308.
     Google Scholar
  16. Dhiman, N., Kaur, K., Jaitak, V. Tetrazoles as Anticancer Agents: A Review on Synthetic Strategies, Mechanism of Action and SAR Studies. Bioorganic & Medicinal Chemistry, 2020, 28,115599. hptts://doi.org/10.1016/j.bmc.2020.115599.
     Google Scholar
  17. Ahmadi, A., Sedaghat, T., Motamedi, H., Azadi, R. Anchoring of Cu (II)-Schiff base complex on magnetic mesoporous silica nanoparticles: catalytic efficacy in one-pot synthesis of 5-substituted-1H-tetrazoles, antibacterial activity evaluation and immobilization of α-amylase. Applied Organometallic Chemistry, 2020, 34. hptts://doi.org/10.1002/aoc.5572.
     Google Scholar
  18. Gao, F., Xiao, J., Huang, G. Current scenario of tetrazole hybrids for antibacterial activity. European Journal of Medicinal Chemistry, 2019, 184, 111744. hptts://doi.org/10.1016/j.ejmech.2019.111744.
     Google Scholar
  19. Salahuddin, M., Singh, S., Shantakumar, S.M. Synthesis of Some Novel Benzo Thieno [2, 3-d] pyrimidines. Rasayan journal of chemistry, 2009, 2 (1):167-173.
     Google Scholar
  20. Mosaad, M., el domany, R., abd el hameed, R. Synthesis of certain pyrrole derivatives as antimicrobial agents. Acta Pharm, 2009, 59, 145–158. https://doi.org/10.2478/v10007-009-0016-9.
     Google Scholar
  21. Mohite, P.B., Bhaskar, V.H. Potential Pharmacological Activities of Tetrazoles in The New Millennium. International Journal of PharmTech Research, 2011, 3 (3), 1557-1566. http://www.sphinxsai.com/Vol.3No.3/pharm/pdf/PT=51(1557-1566)JS11.pdf.
     Google Scholar
  22. Kleemann, A., Engel, J. In ‘Pharmaceutical Substances: Syntheses, Patents, Applications’, Eds. Thieme, Stutggart. http://vlib.kmu.ac.ir/kmu/handle/kmu/67899.
     Google Scholar
  23. Dioukhane, K., Touijer, H., Alami, A., Bekkari, H., Benchemsi, N. Study of the antibacterialeffect of 5-(4-chlorophenyl)-1H-tetrazole and its oxime precurs oragainststrainsisolated from the hospitalenvironment. Journal of Medicinal and Chemical Sciences, 2018, 1(1), 18-22. hptts://doi.org/10.26655/jmchemsci.2018.6.5.
     Google Scholar
  24. Dioukhane, K. Moussaid, S., Achamlale, S., Alami, A., Kabbour, M.R., Aouine, Y., Faraj, H., Bouksaim, M., Gaye, M.L., Comparative study of antibacterial activity of some biheterocyclic “triazolic-tetrazolic” a-aminoacid derivatives against strains. Moroccan Journal of Heterocyclic Chemistry, 2020, 19(2), 87-91. https://doi.org/10.48369/IMIST.PRSM/jmch-v19i2.23360.
     Google Scholar
  25. Alami, A., El Hallaoui, A., El Achqar, A., Roumestant, M. L., Viallefont, Ph. The use of 5-substituted tetrazoles in a Synthesis of heterocyclic α-amino esters. Bull. Soc. Chim. Belg., 1996, 105 (12), 769.
     Google Scholar
  26. Mohite, P.B., Pandhare, R.B., Khanages, G., Bhaskar, V.H. Synthetis and in vitro antimicrobial activity of some novel chalcones containing 5-phenyltetrazole. acta Pharmaceutica Sciencia, 2010, 52, 505-510.
     Google Scholar
  27. Kategaonkar, A.H., Pokalwar, R.U., Sonar, S.S., Gawali, V.U., Shingate, B.B., Shingare, M.S. Synthesis, in vitro antibacterial and antifungal evaluations of new α-hydroxyphosphonate and new α- acetoxyphosphonate derivatives of tetrazolo [1, 5-a] quinoline. European Journal of Medicinal Chemistry, 2010, 45, 1128–1132. https://doi.org/10.1016/j.ejmech.2009.12.013.
     Google Scholar
  28. Dhayanithi, V., Shafisayed, S., Kumaran, K., Sankar, K.J., Ragavan, R. V., Goud, K.P. S., Kumari, N.S., Pati, H.N. Synthesis of selected 5-thio-substituted tetrazole derivatives and evaluation of their antibacterial and antifungal activities. J. Serb. Chem. Soc, 2011, 76 (2), 165-175. https://doi.org/10.2298/JSC090421001D.
     Google Scholar
  29. Yildirir, Y., Faruk, M.U., Naki, C., Ozkan, H., Yavuz, S., Disli, A., Ozturk, S., Turke, L. The synthesis and investigation of the antimicrobial activity of some new phenylselanyl-1-(toluene-4- sulfonyl)-1H-tetrazole derivatives. Med Chem Res, 2009, 18, 91–97. https://doi.org/10.1007/s00044-008-9110-7.
     Google Scholar
  30. Morjan, R.Y., El-Attar, N.H., Abu-Teimb, O.S., Ulrich, M., Awadallaha, A.M., Mkadmh, A.M., Elmanama, A.A., Raftery, J., Abu-Awwad, F.M., Yaseen, Z. J., Elqidrea, A.F., Gardiner, J.M. Synthesis, antibacterial and QSAR evaluation of 5-oxo and 5-thio derivatives of 1, 4-disubstituted tétrazoles. Bioorganic & Medicinal Chemistry Letters, 2015, 25, 4024-4028. https://doi.org/10.1016/j.bmcl.2015.04.070.
     Google Scholar
  31. Dhayanithi, V., Shafisayed, S., Ramasamy, V.R, Kumaran, K., Sankar, J., Raguraman, K. G., Nalilu, S.K., Pati, H.N. Synthesis and evaluation of a series of 1-substituted tétrazole derivatives as antimicrobial agents. Org. Commun, 2010, 3 (3), 45-56.
     Google Scholar
  32. Rostom, S.A.F., Ashour, H.M.A., Abd El Razik, H.A., Abd El Fattah, A.H.F, El-Din, N.N. Azole antimicrobial pharmacophore-based tetrazoles: Synthesis and biological evaluation as potential antimicrobial and anticonvulsant agents. Bioorganic & Medicinal Chemistry, 2009, 17: 2410–2422. https://doi.org/10.1016/j.bmc.2009.02.004.
     Google Scholar
  33. Ramiz, M.M., Abdel-Rahman, A.A.H. Antimicrobial activity of newly synthesized 2,5-disubstiteted 1,3,4-thiodiazole derivatives. Bull. Korean Chem. Soc, 2011, 32, 4227-42320. http://dx.doi.org/10.5012/bkcs.2011.32.12.4227.
     Google Scholar
  34. Rao, S.N., Raviskankar, T., Latha, J. and SudhakarBabu, K. Synthesis, characterization and antimicrobial activity of novel biphenyl tétrazoles. Der Pharma Chemico, 2012, 4 (3), 1093-1103.
     Google Scholar
  35. EUCAST, EUropean Committee on Antimicrobial suscuptibility Testing, 2015. Comité de l’antibiogramme de la Société Française de Microbiologie, recommandations; V1.0 Janvier 2015.
     Google Scholar
  36. CLSI, Clinical and Laboratory Standards Institute, 2012. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard-ninth edition. 32 (2): M02-A9.
     Google Scholar
  37. Demirbas, N., Karaoglu, S.A., Demirbas, A., Sancak, K. Synthesis and antimicrobial activities of some new 1-(5-phenylamino-[1,3,4]thiadiazol-2-yl)methyl-5- oxo-[1,2,4]triazoles and 1-(4-phenyl-5-thioxo-[1,2,4]triazol-3-yl)methyl-5-oxo- [1,2,4]triazoles derivatives. European Journal of Medicinal Chemistry, 2010, 39, 793–804. https://doi.org/10.1016/j.ejmech.2004.06.007.
     Google Scholar
  38. Hellal, A., Chafaa, S., Chafai, N. Synthesis, antimicrobial and antifungal screening of three new of Alpha-aminophosphoric acids. International Journal of Scientific and Engineering Research, 2015, 6 (8),2229-5518.
     Google Scholar
  39. Delarras, C., Microbiologie, 90 heures de travaux pratiques. G. Morin Europe, Levallois-Perret, ISBN: 2-910749-07-X, 1998, 169-178.
     Google Scholar
  40. Berche P., Gaillard J.L., Simonet M. In Nosocomial Infections Caused by bactearia and Their Prevention in bacteriology. 1988; Edited by Flammation Medecine Sciences; 64-71.
     Google Scholar
  41. Gatsing D., Tchakoute V., Ngamga D., Kuiate J.K., Tamokou J.D.D. In vitro antibacterial activity of crinum purpurascens herb. Leaf extract against the Salmonella species causing typhoid fever and its toxicology evaluation; Iran. J. Med. Sci.; 2009, 34: 126-137.
     Google Scholar