##plugins.themes.bootstrap3.article.main##

Considering the richness of heterocyclic chemistry, and the diversity of applications it possesses, in the present work we were interested in preparing new polyfunctional α,α-diaminodiesters derived from glycine, via the N-alkylation reaction of methyl 2-azido-2-benzamidoacetate with a series of heterocyclic and non-heterocyclic carboxylic aminoesters, using different bases. The structures of the synthesized molecules were characterized by 1D and 2D NMR spectroscopy, mass spectrometry (MS-ESI) and elemental analysis. Two compounds from this series were isolated as single crystals and their chemical structures were determined by X-ray diffraction. The antioxidant effect of the synthesized compounds was tested in vitro using the free radical scavenging power (DPPH) and reducing power (FRAP) tests. The results show that the different extracts tested have a relatively high antioxidant power compared to the positive control considered, especially for the compound methyl 2-benzamido-2-(2-methoxy-2-oxo-1-phenylethyl)amino)acetate, which showed a very strong antiradical power and reducing power.

References

  1. Dhanapal, V., Ramalingam, J., Raman, A.N. Synthesis, Characterization and Antimicrobial Activity of 1,2-dihydroquinoxaline-3-yl-3-Substitutedphenyl-1H-pyrazole-4-Carbaldehyde. J. Heterocyclic Chem., 2017, 54(2). https://doi.org/10.1002/jhet.2663.
     Google Scholar
  2. Faidallah, H. M., Rostom, S. A. F. Synthesis, Anti-Inflammatory Activity, and COX-1/2 Inhibition Profile of Some Novel Non-Acidic Polysubstituted Pyrazoles and Pyrano[2,3-c]pyrazoles. Arch. Pharm. Chem. Life Sci., 2017, 350(5), e1700025. https://doi.org/10.1002/ardp.201700025.
     Google Scholar
  3. Ansari, A., Ali, A., Asif, M., Shamsuzzaman. Review: biologically active pyrazole derivatives. New J. Chem., 2017, 41, 16-41. https://doi.org/10.1039/C6NJ03181A.
     Google Scholar
  4. Rao, N. S., Shaik, A. B., Routhu, S. R., Ali Hussaini, S. M., Sunkari, S., Rao, A. V. S., Reddy, A. M., Alarifi, A., Kamal, A. New Quinoline Linked Chalcone and Pyrazoline Conjugates: Molecular Properties Prediction, Antimicrobial and Antitubercular Activities. Chemistry Select., 2017, 2, 2989-2996. https://doi.org/10.1002/slct.201602022.
     Google Scholar
  5. Sadashiva, R., Naral, D., Kudva, J., Kumar, S. M., Shafeeulla R, M., Kumsi, M. Synthesis, structure characterization, in vitro and in silico biological evaluation of a new series of thiazole nucleus integrated with pyrazoline scaffolds. J. Mol. Struct., 2017, 1145, 18. https://doi.org/10.1016/j.molstruc.2017.05.066.
     Google Scholar
  6. Lin, B., Zhang, W. H., Wang, D. D., Gong, Y.,Wei, Q. D., Liu, X. L., Feng, T. T., Zhou, Y., Yuan, W. C. 3-Methyl-4-nitro-5-isatylidenyl-isoxazoles as 1,3-dipolarophiles for synthesis of polycyclic 3,3′-pyrrolidinyl-dispirooxindoles and their biological evaluation for anticancer activities. Tetrahedron., 2017, 73, 5176 https://doi.org/10.1016/j.tet.2017.07.011.
     Google Scholar
  7. Madhavilatha, B., Fatima, N., Sabitha, G., Subba Reddy, B. V., Yadav, J. S., Bhattacharjee, D., Jain, N. Synthesis of 1,2,3-triazole and isoxazole-linked pyrazole hybrids and their cytotoxic activity. Med. Chem. Res., 2017, 26(8), 1753-1763.https://doi.org/10.1007/s00044-017-1884-z.
     Google Scholar
  8. Bhardwaj, A. A Review on Azole Derivatives as Potent Anticancer Agents. International Journal of ChemTech Research., 2018,11(11): 154-175. http://dx.doi.org/10.20902/IJCTR.2018.111116.
     Google Scholar
  9. Zghab, I., Trimeche, B., Ben Mansour, M., Hassine, M., Touboul, D., Ben Jannet, H. Regiospecific synthesis, antibacterial and anticoagulant activities of novel isoxazoline chromene derivatives. Arabian J. Chem., 2017, 10, S2651-S2658, https://doi.org/10.1016/j.arabjc.2013.10.008.
     Google Scholar
  10. Chen, M., Heimer, P., Imhof, D. Synthetic strategies for polypeptides and proteins by chemical ligation, Amino Acids.,2015, 47,7:1283-99. https://doi.org/10.1007/s00726-015-1982-5.
     Google Scholar
  11. Sadiq A., Sewald, N.t. 6-Alkynyl- and 6-Aryl-Substituted (R)-Pipecolic Acid Derivatives. Amino Acids., 2013, 252813, https://doi.org/10.1021/ol4010728.
     Google Scholar
  12. Kotha, S., Shah, V. R., Halder, S., Vinodkumar, R. and Lahiri, K. Synthesis of bis-armed amino acid derivatives via the alkylation of ethyl isocyanoacetate and the Suzuki–Miyaura cross-coupling reaction. Amino Acids., 2007, 32: 387–394. https://doi.org/10.1007/s00726-006-0402-2.
     Google Scholar
  13. Mallakpour, Sh., Mirkarimi, F. Synthesis and characterization of novel, optically active polyamides derived from S-valine natural amino acid and bulky anthracenic side chain. Amino Acids.,2010,39:1255–1263. https://doi.org/10.1007/s00726-010-0560-0.
     Google Scholar
  14. Mrkus, L., Batinić, N. J., Bjeliš, Jakas, A. Synthesis and biological evaluation of quercetin and resveratrol peptidyl derivatives as potential anticancer and antioxidant agents, Amino Acids.,2018, 51,2, 319-329. https://doi.org/10.1007/s00726-018-2668-6.
     Google Scholar
  15. Naydenova, E., Troev, K., Topashka-Ancheva, M., Hagele, G., Ivanov, I. and Kril, A. Synthesis, cytotoxicity and clastogenicity of novel α-aminophosphonic acids, Amino Acids., 2007, 33: 695–702. https://doi.org/10.1007/s00726-006-0459-y.
     Google Scholar
  16. Rosa Cristina, M., Ferreira, Maria Manuela, M., Susana, R., Costa, P. G. Heterocyclic amino acids as fluorescent reporters for transition metals: synthesis and evaluation of novel furyl-benzoxazol-5-yl-l-alanines, New Journal of Chemistry.,2018,42, 3483-3492. DOI: 10.1039/x0xx0000x.
     Google Scholar
  17. Golshadi Ghalehshahi, H., Balalaie, S., Aliahmadi, A., Moghimi, R. 4-Aminocoumarin derivatives: synthesis and applications, Amino Acids.,2018, 50, 1461-1470. https://doi.org/10.1007/s00726-018-2624-5.
     Google Scholar
  18. Kotha, S., Shah, V. R., Halder, S., Vinodkumar, R. and Lahiri K. Synthesis of bis-armed amino acid derivatives via the alkylation of ethyl isocyanoacetate and the Suzuki–Miyaura cross-coupling reaction, Amino Acids.,2007,32: 387–394 https://doi.org/10.1007/s00726-006-0402-2.
     Google Scholar
  19. Magafa, V., Borovic kova, L., Slaninova, J., Cordopatis, P. Novel analogues of arginine vasopressin containing α-2-indanylglycine enantiomers in position 2, Amino Acids.,201038:1549–1559. https://doi.org/10.1002/psc.1189.
     Google Scholar
  20. Giovanni Roviello, N. Roberta I., Valentina R., Rosanna P., Hayarpi S., & Caterina V. Synthesis and biological evaluation of a novel Amadori compound, Amino Acids.,2016 40,11, 9007-9011. https://doi.org/10.1007/s00726-016-2363-4.
     Google Scholar
  21. Wang, B., Miao, Z. W., Wang, J., Chen2, R. Y., Zhang, X. D. Synthesis and biological evaluation of novel naphthoquinone fused cyclic aminoalkylphosphonates and aminoalkylphosphonic monoester, Amino Acids., 2008,35: 463–468. https://doi.org/10.1007/s00726-007-0570-8.
     Google Scholar
  22. Mikolajczyk, M. J. Acyclic and cyclic aminophosphonic acids: asymmetric syntheses mediated by chiral sulfinyl auxiliary, Organomet. Chem.,2005, 690, 2488-2496. https://doi.org/10.1016/j.jorganchem.2004.10.045.
     Google Scholar
  23. Meyer, F., Laaziri, A., Papini, A. M., Uziel, J., Juge, S., A novel phosphorus–carbon bond formation by ring opening with diethyl phosphite of oxazolines derived from serine, Tetrahedron.,2004, 60, 3593-3597. https://doi.org/10.1016/j.tet.2004.03.001.
     Google Scholar
  24. Rodrigues, R.S, da Silva, J.F., Boldrini-França, J., Fonseca, F.P.P., Otaviano, A.R., Henrique-Silva, F., Magro, A.J., Braz, A.S.K, dos Santos, J.I., Homsi-Brandeburgo, M.I. Structural and functional properties of Bp-LAAO, a new l-amino acid oxidase isolated from Bothrops pauloensis snake venomBiochimie.,2009, 91, 4, 490-501. https://doi.org/10.1016/j.biochi.2008.12.004.
     Google Scholar
  25. Samel, M., Tõnismägi, K., Rönnholm, G., Vija, H., Siigur, J., Kalkkinen, N., Siigur. l-Amino acid oxidase from Naja oxiana venom, Comp. Biochem. Physiol.,2008, B 149, 572-580. https://doi.org/10.1016/j.cbpb.2007.11.008.
     Google Scholar
  26. De Lombaert, S., Blanchard, L., Tan, T., Sakane, Y., Berry, C., and. Ghai, R. D. Non-peptidic inhibitors of neutral endopeptidase Discovery and optimization of potency, Bioorg.Med. Chem. Lett., 1995, 5, 145. https://doi.org/10.1016/0960-894X(94)00474-T.
     Google Scholar
  27. Chou, L.C., Huang, L.J., Yang, J.S., Lee, F.Y., Teng, C.M., Kuo, S.C. Synthesis of furopyrazole analogs of 1-benzyl-3-(5-hydroxymethyl-2-furyl)indazole (YC-1) as novel anti-leukemia agents, Bioorg. Med. Chem.,2007, 132, 15, 1732-1740. PMID: 17189698. https://doi.org/10.1016/j.bmc.2006.12.001.
     Google Scholar
  28. Li, J., Zhao, Y.F., Zhao, X.L., Yuan, X.Y., Gong, P. Synthesis and Anticancer Activities of Novel 1,4-Disubstituted Phthalazines, Molecules.,2006, 11, 574-582. PMID: 17971729. https://doi.org/10.3390/11070574.
     Google Scholar
  29. Elhenawy, A.A. Design, Synthesis of New Amino Acid Derivatives and Evaluate DNA Binding Activity, Anticancer and Antimicrobial Activity, Int. J. of Bioorg. Chem.,2017, 2, 36-50. https://doi.org /10.11648/j.ijbc.20170202.11.
     Google Scholar
  30. Yan, R.Z., Liu, X.Y., Xu, W.F., Pannecouque, C., Witvrouw, M., De Clercq, E. Synthesis and anti-HIV evaluation of the novel 2-(m-chlorobenzyl)-4-substituted-7-methyl-1, 1, 3-trioxo-pyrazolo[4, 5-e] [1, 2, 4]thiadiazines, Arch. Pharm. Res. 2006, 29, 957-962. https://doi.org/10.1007/BF02969278.
     Google Scholar
  31. Manjari, S., Pandey, A., Chakrabarti, L. K., Pandey, S.K. Bhattacharya, Plasma isatin is increased in maternal anxiety and obstetrical stress, Stressand Health.,2002, 18, 133. https://doi.org/10.1002/smi.932.
     Google Scholar
  32. Amabili, P., Amici, A., Civitavecchia, A., Maggiore, B., Orena, M. S., Rinaldi, Tolomelli, A. Highly stable atropisomers by electrophilic amination of a chiral γ-lactam within the synthesis of an elusive conformationally restricted analogue of α-methylhomoserine, Amino Acids., 2015,48,2:461-78. https://doi.org/10.1007/s00726-015-2100-4.
     Google Scholar
  33. Reider, P.J., Eichen Conn, R.S., Davis, P., Grenda, V.J., Zambito, A.J., Grabowski, J. Synthesis of (R)-serine-2-d and its conversion to the broad-spectrum antibiotic fludalanine, Org. Chem. 1987, 52, 3326-3334. https://doi.org/10.1021/jo00391a029.
     Google Scholar
  34. Saravanan, P., Corey, E.J. A Short, Stereocontrolled, and Practical Synthesis of α-Methylomuralide, a Potent Inhibitor of Proteasome Function. J. Org. Chem.,2003, 68,2760-2764. https://doi.org/10.1021/jo0268916.
     Google Scholar
  35. Mrkus, L., Batinić, J., Bjelis, N., Jakas, R. Synthesis and biological evaluation of quercetin and resveratrol peptidyl derivatives as potential anticancer and antioxidant agents, AminoAcids., 2018, https://doi.org/10.1007/s00726-018-2668-6.
     Google Scholar
  36. Golshadi Ghalehshahi, H., Balalaie, S., Aliahmadi, A., Moghimi, R. Synthesis of 4-N-α-coumaryl amino acids and investigation of their antioxidant, antimicrobial activities and fluorescence spectra, AminoAcids., 2018, https://doi.org/10.1007/s00726-018-2624-5.
     Google Scholar
  37. Steglich, W., Kober, R. Untersuchungen zur Reaktion von Acylaminobrommalonestern und Acylaminobromessigestern mit Trialkylphosphiten-eine einfache Synthese von 2-Amino-2-(diethoxyphosphoryl)Essigsäure Ethylester. Liebig. Ann Chem. 1983, 4, 599-609. https://doi.org/10.1002/jlac.198319830409.
     Google Scholar
  38. Achamlale, S., Elachqar, A., El Hallaoui, A., El Hajji, S., Roumestant, M.L. Ph. Viallefont, Synthesis of α- triazolyl α-amino acid derivatives. Amino Acids., 1997, 12, 257-263. https://doi.org/10.1007/BF01373006.
     Google Scholar
  39. Achamlale, S., Elachqar, A., El Hallaoui, A., El Hajji, S., Alami, A., Roumestant, M.L. Ph. Viallefont, Synthesis of biheterocyclic α-amino acid. Amino Acids., 1999, 17, 149-163. https://doi.org/10.1007/BF01361878.
     Google Scholar
  40. Karai, O., Aouine, Y., Faraj, H., Alami, A., El Hallaoui, A., Zouihri, H. Methyl (2R)-2-benzamido-2-{[(1R)-2-meth­oxy-2-oxo-1 phenyl­ethyl]amino}­acetate, IUCrData.,2017,2, x171155. https://doi.org/10.1107/S2414314617011555.
     Google Scholar
  41. Karai, O., Aouine, Y., Faraj, H., Alami, A., El Hallaoui, A., Zouihri, H. Methyl (1-benzamido-2-methoxy-2-oxoethyl)-Tryptophanate. IUCrData.,2017, 2, x171547. https://doi.org/10.1107/S2414314617015474.
     Google Scholar
  42. Rice-Evans C.A., Miller N.J., Bolwell P.G., Bramley P.M., Pridham J.B. “The relative antioxidant activities of plant-derived polyphenolic flavonoids”, Free Radical Research, vol. 22, pp 375-383, 1995.https://doi.org/10.3109/10715769509145649.
     Google Scholar
  43. Bartosz G. Generation of reactive oxygen species in biological systems, Comments on Toxicology”, vol. 9, pp5-21, 2003. https://doi.org/10.1080/08865140302420.
     Google Scholar
  44. Miller N.J., Rice-Evans C.A., Davies M.J., Gopinatan V. & Milner A. A nouvel method for measuring antioxidant capacity and its application to monitoring antioxidant status in premature neonates. Clinic Science., 1993, 84: 407-412. https://doi.org/10.1042/cs0840407.
     Google Scholar
  45. Meister A., Bernhardt G., Christoffel V., Buschauer A. Antispasmodic activity of Thymus vulgaris extract on the isolated guinea-pig trachea: discrimination between drug and ethanol effects. Planta Medica. 1999, 65: 512-516. DOI: 10.1055/s-1999-14006.
     Google Scholar
  46. Miquel-Becker E., Niessen L.R. & Skibsted L.H. Antioxidant evaluation protocols:foods quality or health effects. Food Research and Technology., 2004,219: 561-571. https://doi.org/10.1007/s00217-004-1012-4.
     Google Scholar
  47. Rivero-Pérez MD., Muniz P., Gonzalez-Sanjosé ML. Antioxidant profile of red wines evaluated by total antioxidant capacity, scavenger activity, and biomarkers of oxidative stress methodologies. J. Agric. Food Chem. 2007, 11: 5476-5483. https://doi.org/10.1021/jf070306q.
     Google Scholar
  48. Benzie I.F.F., and Strain J.J. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Analytical Biochemistry., 1996. 239 (1): 70-76. https://doi.org/10.1006/abio.1996.0292.
     Google Scholar
  49. Portes E. Synthèse et Etudes de étrahydrocurcuminoïdes : Propriétés photochimiques et antioxydantes, applications à la préservation de matériaux d'origine naturelle., 2008. Thèse de doctorat. № γ695. Université Bordeaux I. β44p.
     Google Scholar
  50. Hussain A.I. Characterization and biological activities of essential oils of some species of lamiaceae., 2009. Doctorale thesis, Pakistan. 257.
     Google Scholar
  51. Moon J-K., and Shibamoto TAntioxidant Assays for Plant and Food Components. J.Agric. Food Chem., 2009. 57 (5): 1655-1666. https://doi.org/10.1021/jf803537k.
     Google Scholar
  52. Castro L., Freeman B.A. Reactive oxygen species in human health and disease. Nutrition., 2001. Vol 17, Num 2, pp 161-165; ref: 43.
     Google Scholar
  53. Siddhuraju P., Becker K. The antioxidant and free radical scavenging activities of processed cowpea (Vigna unguiculata (L.) Walp) seed extracts. Food Chem., 2007. 101: 10-19. https://doi.org/10.1016/j.foodchem.2006.01.004.
     Google Scholar
  54. Sanchez-Moreno, C. Methods used to evaluate the free radical scavenging activity infoods and biological systems. Int. J. of FoodsSci., 2002, Tech. 8: 121-137. https://doi.org/10.1106/108201302026770.
     Google Scholar
  55. Yang, J., Guo,J. J., Yuan. In vitro antioxidant properties of rutin. LWT.,2008, 41, pp., 1060–1066. https://doi.org/10.1016/j.lwt.2007.06.010.
     Google Scholar
  56. Karai, O., Aouine, Y., Faraj, H., Alami, A/, Kabbour, R.K., El Hallaoui, A., and Mohammed Bouksaim, M. Synthesis, characterization and antibacterial activity of Methyl (2R)-2-benzamido-2-{[(1R)-2-methoxy-2-oxo-1-phenylethyl]amino}acetate Mediterranean Journal of Chemistry 2018, 7(4), 267-271, http://dx.doi.org/10.13171/mjc74181110-alami.
     Google Scholar
  57. Karai, O.; El Hamdani, M.; Faraj, H.; Alami, A.; Kabbour, M.R.; El Hallaoui, A.; Bouksaim, M.; Aouine, Y. Methyl N-[1-(Benzoylamino)-2-methoxy-2-oxoethyl]-tryptophanate. Molbank 2017, 2017, M958. https://doi.org/10.3390/M958.
     Google Scholar
  58. Karai, O., Aouine, Y., Faraj, H., Alami, A/, Kabbour, R.K., El Hallaoui, A., and Mohammed Bouksaim, M. Synthesis, characterization and antibacterial activity of Methyl (2R)-2-benzamido-2-{[(1R)-2-methoxy-2-oxo-1-phenylethyl]amino}acetate Mediterranean Journal of Chemistry 2018, 7(4), 267-271, http://dx.doi.org/10.13171/mjc74181110-alami.
     Google Scholar
  59. Huang, D., Ouand, B., Prior, R.L. The chemistry behind antioxidant capacity assays. Jofagr Food chem., 2005.53:1841-1856. https://doi.org/10.1021/jf030723c.
     Google Scholar
  60. Benzie, I.F.F., Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry., 1996, 239 (1): 70-76. https://doi.org/10.1006/abio.1996.0292.
     Google Scholar