##plugins.themes.bootstrap3.article.main##

The identification and quantification of different contaminants in natural waters have been widely disseminated in scientific journals. In the last two decades, removal from aqueous samples of drugs and their metabolites, also called emerging contaminants, have been highlighted. The problem of their existence in the environment, besides its persistence, is related to the occurrence of more resistant bacteria, being a serious risk to health. Thus, the objectives of this project were characterization of cattail leaves, Typha angustifolia L. in natura, and its application for the removal of the antibiotic chloramphenicol in aqueous samples. The material was characterized by Fourier Transform in the Infrared Region (FTIR), Point of Zero Charge (PZC), Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy (SEM), as well as surface area measurements (Brunauer, Emmett, Teller-BET). Batch experiments were performed considering the influence of pH, contact time and analyte concentration, whose supernatant solution was quantified by Ultra Performance Liquid Chromatography (UPLC). Both results, regarding FTIR spectrum and NMR analysis, corroborated by identifying functional chemical groups that promote interaction between biosorbent and analyte. The pHPZC, estimated around 5.75, was considered to choose the ideal pH of the medium that favors adsorption. By means of SEM images, the material was characterized by parallel plates with large number of channels (heterogeneous surface). Type II isotherm was obtained from BET method, with low surface area, nonporous or macroporous, mono and multilayer adsorption. Pseudo-second order was the model that best fit the adsorption kinetics, while for determining the maximum capacity, the Freundlich model showed the highest agreement.

References

  1. J. C. Rocha, and R. N. Hirche. Determinação de metais totais e metais solúveis em amostras de água bruta e água tratada de represas de captação da estação de tratamento de águas (ETA) de Araraquara-SP. Eclética Química, São Paulo, 1994;19:105-117.
     Google Scholar
  2. M. L. Zuccari. Determinação de fatores abióticos e bióticos do Ribeirão Lavapés BotucatuSP. 113 f. Dissertação (Mestrado) - Faculdade de Ciências Agronômicas, Universidade Estadual Paulista Julio de Mesquita Filho, Botucatu, 1991.
     Google Scholar
  3. S. Rodriguez-Mozaz, M. J. Lopez de Alda, D. Barceló. Picogram per liter level determination of estrogens in natural waters and waterworks by a fully automated on-line solid phase extraction-liquid chromatography-electrospray tandem mass spectrometry method. Analytical Chemistry, 2004;76(23):6998-7006.
     Google Scholar
  4. R. W. Reis Filho, R. Luvizotto-Santos, E. M. Vieira. Poluentes Emergentes como Desreguladores Endócrinos. Journal of The Brazilian Society of Ecotoxicology, 2007;2:283-288.
     Google Scholar
  5. C. G. A. Da Silva, and C. H. Collins. Aplicações de cromatografia líquida de alta eficiência para o estudo de poluentes orgânicos emergentes. Química Nova, 2011;34(4):665.
     Google Scholar
  6. J. A. Bendassolli, G. A. Tavares, , R. F. Ignoto, A. L. R. M. Rosset. Procedimentos para recuperação de Ag de resíduos líquidos e sólidos. Química Nova, 2003;26(4):578-581.
     Google Scholar
  7. P. Ashtari, K. Wang, X. Yang, S. Huang, Y. Yamini. Novel separation and preconcentration of trace amounts of copper(II) in water samples based on neocuproine modified magnetic microparticles. Analytica Chimica Acta, 2005;550(1–2):18-23.
     Google Scholar
  8. K. M. Dimpe, J.C. Ngila, P.N. Nomngongo. Preparation and application of a tyre-based activated carbon solid phase. Physics and Chemistry of the Earth, 2018;105:161-169.
     Google Scholar
  9. ANVISA. Agência Nacional de Vigilância Sanitária. Resolução RDC 306/04, 2005. Available: http://elegis.anvisa.gov.br/leisref/public/showAct.php?id=13554.
     Google Scholar
  10. R. L. Z. Cavalcanti, G. M. S. Lima, M. C. Silva, R. P. Scelza, V. R. Moura, V. R. Leite. Descarte Domiciliar de Medicamentos. Revista Presença, 2015;1(2):56-77.
     Google Scholar
  11. I. Oller, S. Malato, J. A. Sánchez-Pérez. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination – A review. Science of the Total Environment, v. In Press, Corrected Proof, 2010.
     Google Scholar
  12. D. M. Bila, and M. Dezotti. Fármacos no meio ambiente. Química Nova, São Paulo, 2003;26(4):523-530.
     Google Scholar
  13. T. Heberer. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology Letters, 2002;131(1-2):5-17.
     Google Scholar
  14. E. S. Gil, and R. O. Mathias. Chemical pharmaceutical wastes: classification and risks. Revista Eletrônica de Farmácia, 2005;2(2):87-93.
     Google Scholar
  15. B. Halling-Sørensen, N. N. Nielsen, P. F. Lanzky, F. Ingerslev, H. C. H. Lutzhoft, S. E. Jørgensen. Occurrence, Fate and effects of pharmaceutical substances in the Environment – A review. Chemosphere, 1998;36(2):357-393.
     Google Scholar
  16. MINISTÉRIO DO MEIO AMBIENTE, Resolução CONAMA nº 430, de 13 de maio de 2011. Available: http://www.mma.gov.br/port/conama/res/res11/res43011.pdf.
     Google Scholar
  17. C. D. Miranda, and R. Zemelman. Bacterial resistance to oxytetracycline in Chilean salmon farming. Aquaculture, 2002;212:31-47.
     Google Scholar
  18. G. R. Boyd, H. Reemtsma, D. A. Grimm, S. Mitra. Pharmaceutical and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada. Science of The Total Environment, 2003;311:135-149.
     Google Scholar
  19. T. A. Ternes, M. Meisenheimer, D. Mcdowell, F. Sacher, H. J. Brauch, B. Haist-Gulde, G. Preuss, U. Wilme, N. Zulei-Seibert. Removal of pharmaceuticals during drinking water treatment. Environmental Science and Technology, 2002;36:3855-3863.
     Google Scholar
  20. M. Schriks, M. B. Heringa, M. M. E. Van der Kooi, P. Voogt, A. P. Van Wezel. Toxicological relevance of emerging contaminants for drinking water quality. Water Research, 2010;44: 461.
     Google Scholar
  21. E. J. Barreiro. Sobre a química dos remédios, dos fármacos e dos medicamentos. Cadernos Temáticos de Química Nova na Escola, 2001;3: 4-9.
     Google Scholar
  22. H. J. Smith. Introduction to the principles of drug design and action. Boca Raton: Taylor & Francis Group, 2006:684-720.
     Google Scholar
  23. K. Kummerer. Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by ecological indicators, Review of 1–13 hospitals in relation to other sources. Chemosphere, 2001;45:957–969.
     Google Scholar
  24. H. S. Spinosa, S. L. Górniak, M. M. Bernardi. Farmacologia aplicada à medicina veterinária. Rio de Janeiro: Guanabara Koogan, 2006, 897 pp.
     Google Scholar
  25. The Extra Pharmacopoeia, martindale, 29th ed., London: The Pharmaceutical Press, 1989, 769 pp.
     Google Scholar
  26. K. Ajit, A. K. Sarmah, M. T. Meyer, A. B. A. Boxall. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 2006;65(5):725-759.
     Google Scholar
  27. L. G. P. Rezende, V. M. Prado, R. S. Rocha, A. A. G. F. Beati, M. P. T. Sotomayor, M. R. V. Lanza. Degradação eletroquímica do cloranfenicol em reator de fluxo. Química Nova, 2010;33(5):1088-1092.
     Google Scholar
  28. F. Zeegers, M. Gibella, B. Tilquin. Analysis of some products from the irradiation of solid chloramphenicol. Radiation Physics and Chemistry, 1997;50(2):149-153.
     Google Scholar
  29. X. Peng, J. Tan, C. Tang, Y. Yu, Z. Wangtt. Multiresidue determination of fluoroquinolone, sulfonamide, trimethoprim, and chloramphenicol antibiotics in urban waters in China. Environmental Toxicology and Chemistry, 2008;27(1):73-79.
     Google Scholar
  30. X. Peng, Z. Wang, W. Kuang, T. Jianhua, L. Ken. A preliminary study on the occurrence and behavior of sulfonamides, ofloxacin and chloramphenicol antimicrobials in wastewaters of two sewage treatment plants in Guangzhou, China. Science of the Total Environment, 2006;37:314-322.
     Google Scholar
  31. K. Choi, Y. Kim, J. Jung, M. H. Kim, C. S. Kim, N. H. Kim, J. Park. Occurrences and ecological risks of roxithromycin, trimethoprim, and chloramphenicol in the Han River, Korea. Environmental Toxicology and Chemistry, 2008;27(3):711-719.
     Google Scholar
  32. H. Liu, G. P. Zhang, C. Q. Liu, L. Li, M. Xiang. The occurrence of chloramphenicol and tetracyclines in municipal sewage and the Nanming River, Guiyang City, China. Journal of Environmental Monitoring, 2009;11(6):1199-1205.
     Google Scholar
  33. Y. Xu, F. Luo, A. Pal, K. Y. H. Gin, M. Reinhard. Occurrence of emerging organic contaminants in a tropical urban catchment in Singapore. Chemosphere, 2011:83(7):963-969.
     Google Scholar
  34. K. N. Woodward. Pesticide, Veterinary and Other Residues in Food. In: Watson, D. H., ed.; Cambridge: Woodward Publisher Limited, 2004, ch. 8, pp. 176.
     Google Scholar
  35. ANVISA, Antimicrobianos – Bases Teóricas e Uso Clínico (Cloranfenicol). Available: http://www.anvisa.gov.br/servicosaude/controle/rede_rm/cursos/rm_controle/opas_web/modulo1/cloranfenicol6.htm.
     Google Scholar
  36. EEC – COUNCIL REGULATION Nº2377/90 – Laying down a Community procedure for establishment of maximum residue limits of veterinary medicinal products in foodstuffs of animal origin. Official Journal of the European Community. L224, 1990.
     Google Scholar
  37. M. C. Rebstock, H. M. Crooks Jr, J. Controulis, Q. R. Bartz. Chloramphenicol (Chloromycetin). Journal of American Chemical Society, 1949;71:2458-2462.
     Google Scholar
  38. SIGMA. Chloramphenicol. Product information. Available: https://www.sigmaaldrich.com/content/dam/sigmaaldrich/docs/Sigma/Product_Information_Sheet/c0378pis.pdf.
     Google Scholar
  39. BRASIL. Ministério da Saúde. ANVISA. Resolução RDC n°. 306, de 07 de dezembro de 2004. Dispõe sobre o Regulamento Técnico para o gerenciamento de resíduos de serviços de saúde. Available: http://portal.anvisa.gov.br/documents/33880/2568070/res0306_07_12_2004.pdf.
     Google Scholar
  40. BRASIL. Conselho Federal de Farmácia. CFF. Resolução RDC n° 33, de 25 de fevereiro de 2003. Dispõe sobre o Regulamento Técnico para o gerenciamento de resíduos de serviços de saúde. Available: http://www.cff.org.br/userfiles/file/resolucao_sanitaria/33.pdf.
     Google Scholar
  41. D. W. Kolpin, E. T. Furlog, M. T. Meyer, E. M. Thurman, S. D. Zaugg, L. B. Barber, H. T. Buxton. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance. Environmental Science and Technology, 2002;36:1202.
     Google Scholar
  42. K. Sun, Y. Shi, W. Xu, N. Potter, Z. LI, J. Zhu. Modification of clays and zeolites by ionic liquids for the uptake of chloramphenicol from water. Chemical Engineering Journal, 2017;313:336-344.
     Google Scholar
  43. A. Mulroy, “When the cure is the problem”, Water Environment & Technology, 2001;13(2):32-37.
     Google Scholar
  44. T. A. Ternes, M. Stumpf, J. Mueller, K. Haberer, R. D. Wilken, M. Servos. Behavior and occurrence of estrogens in municipal sewage treatment plants – I. Investigations in Germany, Canada and Brazil. Science of the Total Environment, 1999;225:81-90.
     Google Scholar
  45. Stumpf M.; Ternes T.A.; Wilken R.; Rodrigues S.V.; Baumann W. Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil. Science of the Total Environment, 1999;225:135.
     Google Scholar
  46. E. Martínes-Carbalho, C. González-Barreiro, S. Scharf, O. Gans. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environmental Pollution, 2007;148:570-579.
     Google Scholar
  47. R. Hirsch, T. Ternes, K. Haberer, K. L. Kratz. Occurrence of antibiotics in the aquatic environment. Science of the Total Environment, 1999;225:109-118.
     Google Scholar
  48. E. Kaale, M. Chambuso, J. Kitwala. Analysis of residual oxytetracycline in fresh milk using polymer reversed-phase column. Food Chemistry, 2008;107:1289-1293.
     Google Scholar
  49. Q. Wang, Q. Liu, J. Li. Tissue distribution and elimination of oxytetracycline perch Lateolabras janopicus and black seabream (Sparus macrocephalus) following oral administration. Aquaculture, 2004;237:31-40.
     Google Scholar
  50. C. Adams, Y. Wang, K. Loftin, M. Meyer. Removal of antibiotics from surface and distilled water in conventional water treatment processes. Journal of Environmental Engineering, 2002;128(3):253-260.
     Google Scholar
  51. J. Ding, Q. Li, X. Xu, X. Zhang, Y. Su, Q. Yue, B. Gao. A wheat straw cellulose-based hydrogel for Cu (II) removal and preparation copper nanocomposite for reductive degradation of chloramphenicol. Carbohydrate polymers, 2018;190:12-22.
     Google Scholar
  52. I. A. Ricardo, V. A. Paiva, C. E. Paniagua, A. G. Trovó. Chloramphenicol photo-Fenton degradation and toxicity changes in both surface water and a tertiary effluent from a municipal wastewater treatment plant at near-neutral conditions. Chemical Engineering Journal, 2018;347:763-770.
     Google Scholar
  53. M. B. Ahmed, J. L. Zhou, H. H. Ngo, W. Guo, M. A. H. Johir, D. Belhaj. Competitive sorption affinity of sulfonamides and chloramphenicol antibiotics toward functionalized biochar for water and wastewater treatment. Bioresource technology, 2017;238:306-312.
     Google Scholar
  54. T. Yao, and S. Yao. Magnetic ionic liquid aqueous two-phase system coupled with high performance liquid chromatography: A rapid approach for determination of chloramphenicol in water environment. Journal of Chromatography A, 2017;1481:12-22.
     Google Scholar
  55. R. F. Nascimento, A. C. A. Lima, C. B. Vidal, D. Q. Melo, G. S. C. Raulino. Cinética de adsorção. In:____. Adsorção: aspectos teóricos e aplicações ambientais. Fortaleza: Imprensa Universitária, 2014, pp. 256.
     Google Scholar
  56. D. M. Ruthven. Principle of Adsorption and Adsorption Processes. New York: John Wiley & Sons, 1984, ch. 2-3, pp. 433.
     Google Scholar
  57. D. D. Do. Adsorption analysis: equilibria and kinetics., 2 ed. London: Imperial college press, 1998, pp. 1-18.
     Google Scholar
  58. A. Dąbrowski. Adsorption—from theory to practice. Advances in Colloid and Interface Science, 2001;93(1-3):135-224.
     Google Scholar
  59. A. W. Adamson, and A. P. Gast. Adsorption of gases and vapors on solids. Physical chemistry of surfaces, 1997:591-681.
     Google Scholar
  60. H. Lingeman, and S.J.F.H. Oussoren. Particle-loaded membranes for sample concentration and/or clean up in bioanalysis. Journal of Chromatography B, 1997;689:221-237.
     Google Scholar
  61. G. R. Castro, I. L. Alcântara, P. S. Roldan, D. F. Bozano, P.M. Padilha, A. O. Florentino, J. C. Rocha. Synthesis, characterization and determination of the metal ions adsorption capacity. Materials Research, 2004;7(2):329-334.
     Google Scholar
  62. J. L. Sotelo, A. Rodríguez, S. Álvarez, J. García. Removal of caffeine and diclofenac on activated carbon in fixed bed colum. Chemical Engineering Research and Design, Amsterdam, 2012;90(7):967–974.
     Google Scholar
  63. S. M. Evangelista, E. Deoliveira, G. R. Castro, L. F. Zara, A. G. S. Prado. Hexagonal mesoporous silica modified with 2-mercaptothiazoline for removing mercury from water solution. Surface Science, 2007;601:2194-2202.
     Google Scholar
  64. A. S. Mestre, J. Pires, J. M. Nogueira, J. B. Parra, A. P. Carvalho, C. O. Ania. Waste-derived activated carbons for removal of ibuprofen from solution: Role of surface chemistry and pore structure. Bioresource Technology, Amsterdam, 2009;10(5):1720-1726.
     Google Scholar
  65. A. P. S. Immich. Remoção de corantes de efluentes têxteis utilizando folhas de Azadirachta indica como adsorvente. 119 pp, Dissertação (Mestrado em Engenharia Química) – Departamento de Engenharia Química e Engenharia de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, 2006.
     Google Scholar
  66. E. S. Brito, S. A. Moreira, R. F. Nascimento, A. G. Oliveira, F. W. Sousa. Remoção de metais de solução aquosa usando bagaço de caju. Química Nova, 2009;32(7):1717-1722.
     Google Scholar
  67. B. Royer, N. F. Cardoso, E. C. Lima, J. C. P. Vaghetti, N. M. Simon, T. Calvete, R. C. Veses. Applications of Brazilian pine-fruit Shell in natural and carbonized forms as adsorbents to removal of methylene blue from aqueous solutions – kinetic and equilibrium study. Journal of Hazardous Materials, 2009;164:1213-1222.
     Google Scholar
  68. R. Gong, Y. Ding, M. Li, C. Yang, H. Liu, Y. Sun. Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution. Dyes and Pigments, 2005;64:187-192.
     Google Scholar
  69. S. Albertini, L. F. Carmo, L. G. Prado-Filho. Elimination of dyes from aqueous solutions using iron oxides and chitosan as adsorbents. A comparative study. Química Nova, 2009;32(5):1239-1244.
     Google Scholar
  70. V. Prigione, G. C. Varese, L. Casieri, V. F. Marchisio. Biosorption of simulated dyed effluents by inactivated fungal biomasses. Bioresource Technology, 2008;99:3559-3567.
     Google Scholar
  71. G. Bonanno, and G. L. Cirelli. Comparative analysis of elemento concentrations and translocation in three wetland congener plants: Typha latifólia and Typha angustifólia. Ecotoxology and Environmental Safety, 2017;143:92–101.
     Google Scholar
  72. C. S. Oliveira, and F. Petacci. Cinética de decomposição da macrófita Typha angustifolia L. presented at CONGRESSO DE PESQUISA, ENSINO E EXTENSÃO, VI. Goiânia. Anais do VI Congresso de Pesquisa, Ensino e Extensão, pp. 2976-2988, 2009.
     Google Scholar
  73. D. Demirezen, and A. Aksoy. Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere, 2004;56:685-696.
     Google Scholar
  74. R. A. Almeida, L. F. C. Oliveira, H. J. Kliemann. Eficiência de espécies vegetais na purificação de esgoto sanitário. Pesquisa Agropecuária Tropical, 2007;37:1-9.
     Google Scholar
  75. P. A. R. D. Sousa. Avaliação da adsorção de contaminantes emergentes pela Casca de Banana e Folhas da Typha angustifolia L., 117 pp. Dissertação de Mestrado (PósGraduação em Química da Universidade Federal de Goiás-Regional Catalão), 2015.
     Google Scholar
  76. G. F. Pang. Chloramphenicol. In____: Analytical Methods for Food Safety by Mass Spectrometry: Veterinary Drugs (Volume II). London: Academic Press, 2018, ch. 4, pp. 123-141.
     Google Scholar
  77. S. Lagergren. About Theory of So-Called Adsorption of Soluble Substances. Kungl. Svenska vetenskapsakademiens handlingar, 1898;24:1.
     Google Scholar
  78. Y. S. Ho, and G. Mckay. Pseudo-second order for the sorption process. Process Biochemistry, 1999;34:451–465.
     Google Scholar
  79. T. R. Gonçalves. Adsorção de Cu II em lignina e celulose obtidos a partir de resíduos agrícolas. 63 pp., MONOGRAFIA. Universidade Tecnológica Federal do Paraná, Campo Mourão, 2015.
     Google Scholar
  80. A. S. Silva. Avaliação da capacidade de remoção de saxitoxinas por diferentes tipos de carvão ativado em pó produzidos no Brasil. 115 pp., Dissertação (Mestrado em Tecnologia Ambiental e Recursos Hídricos) - Faculdade de Tecnologia, Universidade de Brasília, Brasília, 2005.
     Google Scholar
  81. J. L. Tambosi. Remoção de fármacos e avaliação de seus produtos de degradação através de tecnologias avançadas de tratamento. 140 pp, Tese (Doutorado em Engenharia Química) – Departamento de engenharia Química, Universidade Federal de Santa Catarina, Florianópolis, 2008.
     Google Scholar
  82. V. Ponnusami, K. S. Rajan, S. N. Srivastava. Application of film-pore diffusion model for methylene blue adsorption onto plant leaf powders. Chemical Engineering Journal, Amsterdam, 2010;163(3):236–242.
     Google Scholar
  83. C. H. Bolster, and G. M. Hornberger. On the Use of Linearized Langmuir Equations. Soil Science Society of America Journal, 2006;71:1796-1806.
     Google Scholar
  84. J. Febrianto, A. N. Kosasih, J. Sunarso, Y. H. Ju, N. Indraswati, S. Ismadji. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. Journal of Hazardous Materials, 2009;162:616-645.
     Google Scholar
  85. N. A. Qambrani, M. M. Rahman, S. Won, S. Shim, C. Ra. Biochar properties and ecofriendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renewable and Sustainable Energy Reviews, 2017;79:255-273.
     Google Scholar
  86. J. Vella, F. Busuttil, N. S. Bartolo, C. Sammut, V. Ferrito, A. Serracinoinglott, L. Azzopardi, G. Laferla. A simple HPLC–UV method for the determination of ciprofloxacin in human plasma. Journal of Chromatography B, 2015;989:80-85.
     Google Scholar
  87. A. O. Jorgetto, A. C. P. Silva, M. H. P. Wondracek, R. I. V. Silva, E. D. Velini, M. J. Saeki, V. A. Pedrosa, G. R. Castro. Multilayer adsorption of Cu(II) and Cd(II) over Brazilian Orchid Tree (Pata-de-vaca) and its adsorptive properties. Applied Surface Science, 2015;345:81-89.
     Google Scholar
  88. E. N. Ali, S. R. Alfarra, M. M. Yusoff, M. F. Rahman. Environmentally friendly biosorbent from Moringa Oleifera leaves for water treatment. International Journal of Environmental Science and Development, 2015;6:165-169.
     Google Scholar
  89. M. Bendjelloul, E. H. Elandaloussi, L. C. Ménorval, A. Bentouami. Quaternized triethanolamine-sebacoyl moieties in highly branched polymer architecture as a host for the entrapment of acid dyes in aqueous solutions. Journal of Water Reuse and Desalination, 2017;7(1):53-65.
     Google Scholar
  90. S. M. Anisuzzaman, C. G. Joseph, W. M. A. B. W. Daud, D. Krishnaiah, H. S. Yee. Preparation and characterization of activated carbon from Typha orientalis leaves. International Journal of Industrial Chemistry, 2015;6(1):9-21.
     Google Scholar
  91. L. J. Gibson. Inside Plants: An Engineering’s View of the Arnold Arboretum. 2012, Harvard University. Available: http://arnoldia.arboretum.harvard.edu/pdf/articles/2012-70-2-inside-plants-an-engineer-s-view-of-the-arnold-arboretum.pdf.
     Google Scholar
  92. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pirotti, J. Rouquerol, T. Siemieniewska. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and applied chemistry, 1985;57(4):603-619.
     Google Scholar
  93. Q. Shi, J. Zhang, C. Zhang, C. LI, B. Zhang, W. Hu, J. T. Xu, R. Zhao. Preparation of activated carbon from cattail and its application for dyes removal. Journal of Environmental Sciences, 2010; 22(1):91-97.
     Google Scholar
  94. L. Ren, J. Zhang, Y. Li, C. L. Zhang. Preparation and evaluation of cattail fiber-based activated carbon for 2, 4-dichlorophenol and 2, 4, 6-trichlorophenol removal. Chemical Engineering Journal, 2011;168(2)553-561.
     Google Scholar
  95. Y. Guo, and D. A. Rockstraw. Physical and chemical properties of carbons synthesized from xylan, cellulose, and Kraft lignin by H3PO4 activation. Carbon, 2006;44(8):1464-1475.
     Google Scholar
  96. H. Zhao, X. Liu, Z. Cao, Y. Zhan, X. Shi, Y. Yang, J. Zhou, J. Xu. Adsorption behaviour and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes. Journal of Hazardous Materials, 2016;310:235-245.
     Google Scholar
  97. D. A. Fungaro, J. C. Izidoro, M. Bruno. Aplicação de material zeolítico sintetizado de cinzas de carvão como adsorvente de poluentes em água. Eclética Química, São Paulo, 2009;34(1).
     Google Scholar
  98. C. R. G. Tavares, M. T. Veit, E. S. Cossich, S. M. Gomes-da-Costa, A. M. Gonzales. Isotermas de adsorção de cobre (II) sobre Biomassa fúngica morta, presented at Anais do IV Encontro Brasileiro sobre Adsorção – EBA, Rio de Janeiro – RJ, pp. 24-31, 2003.
     Google Scholar
  99. V. C. G. D. Santos, A. D. P. A. Salvado, D. C. Dragunski, D. N. C. Peraro, C. R. T. Tarley, J. Caetano. Highly improved chromium (III) uptake capacity in modified sugarcane bagasse using different chemical treatments. Química Nova, 2012;35(8):1606-1611.
     Google Scholar