Methylene blue removal using Eucalyptus Leaves: A Low Cost Protocol towards Environmental Sustainability
##plugins.themes.bootstrap3.article.main##
Indiscriminate use of dyes pollutes water bodies and poses a serious threat to mankind. Hence there is a need to address the problem. Eucalyptus leaves, being abundantly available were tested for the removal of methylene blue dye from water by both batch and column experiments. The material was characterized by Scanning electron microscopy, proximate analysis, and FT-IR spectroscopy. SEM Images show a fractured surface with heterogeneous morphology. Batch experiments were conducted with respect to various physico-chemical parameters such as pH, agitation speed, concentration, etc. The maximum adsorption capacity was found to be 66 mg/g. Over a pH range of 4-8, high adsorption was seen. Adsorption follows a pseudo-second-order kinetic model (R2=0.999). Regeneration was achieved with dilute hydrochloric acid and the material can be reused. Column studies show the possibility of field application. In a nutshell, a low-cost methodology was established with eucalyptus leaves for a safer environment.
References
-
Saleh VM, Abudabbus M. Removal of Methylene Blue Dye Using Roselle Petals from Aqueous Solutions. Int J Chem Mol Nucli Mat and Metal Engg.2013;7:340-343.doi.org/10.5281/zenodo.133411.
Google Scholar
1
-
Afroze S, Sen TK, Ang HM. Adsorption performance of continuous fixed bed column for the removal of methylene blue (MB) dye using Eucalyptus sheathiana bark biomass. Res Chem Intermed.2016; 42:2343–2364. doi. 10.1007/s11164-015-2153-8.
Google Scholar
2
-
Li JW, Li J. Removal of methylene blue from aqueous solution by Adsorption onto crofton weed stalk. Bio Resources. 2013; 8:2521-2536. doi:10.15376/BIORES.8.2.2521-253.
Google Scholar
3
-
Kankılıç GB, Metin AU. Phragmites AustralisPhr as a new cellulose source: Extraction, characterizationand adsorption ofmethylene blue. JMol Liq. 2020; 312:113313-113323. doi.org/10.1016/j.molliq.2020.113313.
Google Scholar
4
-
Shooto ND, Nkutha CG, Guilande NR, Naidoo EB. Pristine and modified mucuna beans adsorptive studies of toxic lead ions and methylene blue dye from aqueous solution.South Afr J Chem Engg. 2020; 31:33–43. doi.org/10.1016/j.sajce.2019.12.001.
Google Scholar
5
-
Lopez–Vasquez A, Suarez A, Gomez C. Assessment of Dye Adsorption by Luffa Cylindrica fibers Using Experimental Design Methodology. Proceedings of the World Congress on EngineeringWCE.pp. 3-8, vol I., London, U.K., 2012.
Google Scholar
6
-
Pathania V, Sharma S, Singh P. Removal of methylene blue by adsorption onto activated carbon developed from ficuscaricabast.Arb J Chem. 2017; 10:S1445-S1451.doi.org/10.1016/j.arabjc.2013.04.021
Google Scholar
7
-
Mane VS, Vijay Babu PV. Studies on the adsorption of Brilliant Green dye from aqueous solution onto low-cost NaOH treated saw dust. Desalination.2011; 273:321–329. doi. 10.1016/j.desal.2011.01.049.
Google Scholar
8
-
Murat O, Dietrich EL, Mohammed H, George AP. Cellular and Molecular Actions of Methylene Blue in the Nervous System. Medici Res Reviews.2010;31:93-117. doi: 10.1002/med.20177.
Google Scholar
9
-
Mesquita B, Botrel C, Magriotis ZM, Saczk AA, Coelho SM, Sales PF.Removal of methylene blue by orange and uvaia seeds. J Adv Agri.2015; 3:236-251. doi: https://doi.org/10.4491/eer.2018.107.
Google Scholar
10
-
Khatod I. Removal of Methylene Blue Dye from Aqueous Solutions by Neem Leaf and Orange Peel Powder.Proceedings of the International Conference on Global Scenario in Environment and Energy, Int J Chem Tech Research, pp. 572-577, vol. 5, Bhopal, Madhya Pradesh, India, 2013.
Google Scholar
11
-
Oden MK, Celalettin O. Removal of Methylene Blue Dye from Aqueous Solution Using Natural Boron Ore and Leach Waste Material: Adsorption Optimization Criteria.Inter J Current Res Acad Review.2014; 1:66–71. ISSN: 2347-3215.
Google Scholar
12
-
Patil S, Das SR, Patel N. Removal of methylene blue, a basic dye from aqueous solutions by adsorption using teak tree (Tectonagrandis) bark powder. Int J Environ Sci. 2011; 1:711–726.ISSN: 0976 – 4402.
Google Scholar
13
-
Dabagh A, Bagui A, Abali M, Aziam R, ChibanM, SinanM, et al. Adsorption of Crystal Violet from aqueous solution onto eco-friendly native Carpobrotus edulis plant.Materials Today: Proceedings.
Google Scholar
14
-
; 37(3):3980-3986. doi.org/10.1016/j.matpr.2020.10.349.
Google Scholar
15
-
Nandi BK, Goswami A, Purkait MK. Adsorption characteristics of brilliant green dye on kaolin. J Hazard Mater. 2009; 161:387–395. doi. 10.1016/j.jhazmat.2008.03.110.
Google Scholar
16
-
Ayad MM, El-Nasr AA. Adsorption of Cationic Dye (Methylene Blue) from Water Using Polyaniline Nanotubes Base.J Phys Chem C.2010;114:14377–14383.doi.org/10.1021/jp103780w.
Google Scholar
17
-
Aruna, Bagotia N, Sharma AK, Kumar S. A review on modified sugarcane bagasse biosorbent for removal of dyes. Chemosphere. 2021;268:129309-129324.doi.org/10.1016/j.chemosphere.2020.129309.
Google Scholar
18
-
Gottipati R, Mishra S. Application of Biowaste (waste generated in biodiesel plant) as an adsorbent for the removal of hazardous dye-methylene blue from aqueous phase. Brazilian J Chem Eng. 2010;27:357-367. doi.10.1590/S0104-66322010000200014.
Google Scholar
19
-
Mishra S, Cheng L, Maiti A. The utilization of agro-biomass/byproducts for effective bio-removal of dyes from dyeing wastewater: A comprehensive review.J Environl Chem Engg. 2021; 9:104901-1049923. doi.org/10.1016/j.jece.2020.104901.
Google Scholar
20
-
Esan OS, Abiola ON, Owoyomi O, Christopher OA, Osundiya MO. Adsorption of Brilliant Green onto Luffa Cylindrical Sponge: Equilibrium, Kinetics, and Thermodynamic Studies. ISRN Phy Chem. 2014; 2014:1–12.doi.org/10.1155/2014/743532.
Google Scholar
21
-
Hosseinzadeh H, Ramin S. Fabrication of starch-graft-poly(acrylamide)/grapheneoxide/hydroxyapatite nanocomposite hydrogel adsorbent for removalof malachite green dye from aqueous solution. Inter J Bio Macromol. 2018; 106:101–115.doi: 10.1016/j.ijbiomac.2017.07.182.
Google Scholar
22
-
Qiu J, Feng Y, Zhang X, Jia M, Yao J. Acid-promoted synthesis of UiO-66 for highly selective adsorption of anionic dyes: Adsorption performance and mechanisms. J Colloid Inter Sci.2017;499:151–158.doi: 10.1016/j.jcis.2017.03.101.
Google Scholar
23
-
Bulut Y, Karaer H. Adsorption of methylene blue from aqueous solution by crosslinked chitosan/bentonite composite. J Disper Sci Tech.2015;36:61–67.doi.org/10.1080/01932691.2014.888004.
Google Scholar
24
-
Asfaram A, Ghaedi M, Yousefi F, Dastkhoon M. Experimental design and modeling of ultrasound assisted simultaneous adsorption of cationic dyes onto ZnS: Mn -NPs-AC from binary mixture.Ultrasonics Sonochemi. 2016; 33:77-89. doi.org/10.1016/j.ultsonch.2016.04.016.
Google Scholar
25
-
Yasemin B, Haluk A. A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination. 2006; 194:259–267.doi.org/10.1016/j.desal.2005.10.032.
Google Scholar
26
-
Altaher H, Khalil TE, Abubeah R. The effect of dye chemical structure on adsorption on activated carbon: a comparative study. Color Tech. 2014; 130:205–214.doi.org/10.1111/cote.12086.
Google Scholar
27
-
Leite LS, Maselli BS, Umbuzeiro GA, Nogueira RFP. Monitoring ecotoxicity of disperse red 1 dye during photo-fenton degradation. Chemosphere. 2016; 148:511–517.doi.org/10.1016/j.chemosphere.2016.01.053.
Google Scholar
28
-
Al-Rashdi BAM, Johnson DJ, Hilal N. Removal of heavy metal ions by nanofiltration. Desalination. 2013;315:2–17. doi. 10.1016/j.desal.2012.05.022.
Google Scholar
29
-
Peterskova M, Valderrama C, Gibert O, Cortina JL. Extraction of valuable metal ions (Cs, Rb, Li, U)from reverse osmosis concentrate using selective sorbents. Desalination. 2012;286:316–323. doi. 10.1016/j.desal.2011.11.042.
Google Scholar
30
-
Lin Q, Gao M, Chang J, Ma H. Adsorption properties of crosslinking carboxymethyl cellulosegrafting dimethyldiallylammonium chloride for cationic and anionicdyes. Carbohydrate Polymers. 2016; 151:283–294.doi: 10.1016/j.carbpol.2016.05.064.doi: 10.3390/molecules25163624.
Google Scholar
31
-
Khan MA, Siddique M, Wahid F, Khan R. Removal of reactive blue 19 dye by sono, photo and sonophotocatalytic oxidation using visible light. Ultrason Sonochem. 2015; 26:370-377. doi: 10.1016/j.ultsonch.2015.04.012.
Google Scholar
32
-
Ainscough TJ, Alagappan P, Oatley-Radcliffe DL, Barron AR. A hybrid super hydrophilic ceramic membrane and carbon nanotube adsorption process for clean water production and heavy metal removal and recovery in remote locations. J Water Process Eng. 2017; 19:220–230. doi.org/10.1016/j.jwpe.2017.08.006.
Google Scholar
33
-
Natarajan S, Bajaj HC, Tayade RJ. Recent advances based on the synergetic effect of adsorptio for removal of dyes from waste water using photocatalytic process. J Environ Sci.2017; 65:201–222.doi: 10.1016/j.jes.2017.03.011.
Google Scholar
34
-
Fu J, Xin Q, Wu X, Chen Z, Yan Y, Liu S. Selective adsorption and separation of organic dyes from aqueous solution on polydopamine microspheres. J Colloid Inter Sci. 2016; 461:292–304. doi: 10.1016/j.jcis.2015.09.017.
Google Scholar
35
-
Javadian H.Application of kinetic, isotherm and thermodynamic models for the adsorption of Co(II) ions on polyaniline/polypyrrole copolymer nanofibers from aqueous solution.J Ind Eng Chem. 2014; 20(6):4233-4241. doi: 10.1016/j.jiec.2014.01.026.
Google Scholar
36
-
Jitjaicham S, Kampalanonwat P, Supaphol P. Metaladsorption behavior of 2,4-dinitrophenyl hydrazinemodified polyacrylonitrile nanofibers. Express Polymer Letters.2013; 7:832–841.doi. 10.3144/expresspolymlett.2014.
Google Scholar
37
-
Ren X, Xiao W, Zhang R, Shang Y, Han R. Adsorption of crystal violet from aqueous solution by chemically modified phoenix tree leaves in batch mode. Desalination Water Treat. 2015; 53:1324–1334.doi.10.1080/19443994.2013.859105.
Google Scholar
38
-
Du X, Wang C, Liu J, Zhao X, Zhong J, Li Y, et al. Extensive and selective adsorption of ZIF-67 towards organic dyes: Performance and mechanism, J Colloid Inter Sci.2017; 506:437–441.doi: 10.1016/j.jcis.2017.07.073.
Google Scholar
39
-
Shajahana A, Shankar S, Sathiyaseelan A, Narayan KS, Narayanan V, Kaviyarasan V, et al. Comparative studies of chitosan and its nanoparticles for theadsorption efficiency of various dyes. InternationalJ. Biol. Macromole.2017;104:1449–1458.doi.org/10.3390/nano10040748.
Google Scholar
40
-
Varaprasad K, Jayaramudu T, Sadiku ER. Removal of dye by carboxymethyl cellulose, acrylamide and graphene oxide via a free radical polymerization process.Carbohydrate Polymers. 2017; 164:186–194. doi.org/10.1016/j.carbpol.2017.01.094.
Google Scholar
41
-
Ma D, Zhu B, Cao B, Wang J, Zhang J. Fabrication of the novel hydrogel based on waste corn stalk for removal of methylene blue dye from aqueous solution. Appli Surface Sci. 2017; 422:944–952. doi: 10.1016/j.apsusc.2017.06.072.
Google Scholar
42
-
Wang X, Liu Q, Liu J, Chen R, Zhang H, Li R, et al. 3D self-assembly polyethyleneimine modified graphene oxide hydrogel for the extraction of uranium from aqueous solution. Appli Surf Sci. 2017; 426:1063–1074.doi.org/10.1016/j.scitotenv.2021.151258.
Google Scholar
43
-
Banerjee S, Chattopadhyaya V MC. dsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arab J Chem.2017;10:S1629–S1638.doi.org/10.1016/j.arabjc.2013.06.005.
Google Scholar
44
-
Ngulube T, Gumbo JR, Masindi V, Maity A. An update on synthetic dyes adsorption onto clay based minerals: A state-of-art review. J Environ Manage. 2017; 191:35-57. doi. 10.1016/j.jenvman.2016.12.031.
Google Scholar
45
-
Kausar A, Iqbal M, Javed A, Aftab K, Nazli JH, Bhatti HN, et al. Dyes adsorption using clay and modified clay: A review. J Mole Liq.(2018) 256:395–407. doi. 10.1016/j.molliq.2018.02.034.
Google Scholar
46
-
Aguiar JE, Cecilia JA, Tavares PAS, Azevedo DCS, Castellon ER,Lucena SMP, et al. Adsorption study of reactive dyes onto porous clay heterostructures. Appli Clay Sci. 2017; 135:35–44. doi. 10.1016/j.clay.2016.09.001.
Google Scholar
47
-
Sawasdee S, Jankerd H, Watcharabundit P. Adsorption of dyestuff in house hold-scale dyeing onto rice husk. Energy Procedia. 2017; 138:1159–1164.doi:10.24294/ace.v1i2.624.
Google Scholar
48
-
Essawy NAE, Ali SM, Farag HA, Konsowa AH, Elnouby M, Hamad HA. Green synthesis of graphene from recycled PET bottle wastes for use in the adsorption of dyes in aqueous solution. Ecotox Environ Safety. 2017; 145:57–68. doi. 10.1016/j.ecoenv.2017.07.014.
Google Scholar
49
-
Li P, Gao B, Li A, Yang H. Highly selective adsorption of dyes and arsenate from their aqueous mixtures using a silica-sand/cationized-starch composite Micropor andMesopor Mater.2018; 263:210-219. doi. 10.1016/j.micromeso.2017.12.025.
Google Scholar
50
-
Huang L, He M, Chen B, Cheng Q, Hu B. Facile Green Synthesis of Magnetic Porous Organic Polymers for Rapid Removal and Separation of Methylene Blue. ACS Sustainable Chem Eng. 2017; 5:4050−4055.doi.org/10.1021/acssuschemeng.7b00031.
Google Scholar
51
-
Goswami M, Phukan P. Enhanced adsorption of cationic dyes using sulfonic acid modified activated carbon. J Environ Chem Eng. 2017; 5(4):3508-3517. doi. 10.1016/j.jece.2017.07.016.
Google Scholar
52
-
Menya E, Olupot PW, Storz H, Lubwama M, Kiros Y. Production and performance of activated carbon from rice husks for removal of natural organic matter from water: A review. Chem Eng Res Design. 2018; 129:271–296. doi.10.1016/j.cherd.2017.11.008.
Google Scholar
53
-
Dawood S, Sen TK, Phan C. Adsorption removal of Methylene Blue (MB) dye from aqueous solution by bio-char prepared from Eucalyptus sheathiana bark: kinetic, equilibrium, mechanism, thermodynamic and process design. Desalinatio Water Treat.2016; 57(59):28964-28980.doi.org/10.1080/19443994.2016.1188732.
Google Scholar
54
-
Dai H, Peng X, Yang W, Hu F, Qiu Z, Zou Y. Synthesis and characterization of graphitic magnetic mesoporous nanocomposite and its application in dye adsorption. J Mole Liq.2018; 253:197–204. doi.10.1016/j.molliq.2018.01.030.
Google Scholar
55
-
Zeng L, Xiao L, Long Y, Shi X. Trichloroacetic acid-modulated synthesis of polyoxometalate@UiO-66 for selective adsorption of cationic dyes. J Collo Inter Sci.2018;516:274–283. doi. 10.1016/j.jcis.2018.01.070.
Google Scholar
56
-
Konickia W, Hełminiak A, Arabczyk W, Mijowsk E. Adsorption of cationic dyes onto Fe@graphitecore–shell magnetic nanocomposite: Equilibrium,kinetics and thermodynamics. Chem Eng Res Design. 2018; 129:259–270.doi.org/10.1177/0263617418819164.
Google Scholar
57
-
Yan S, Huo W, Yang J, Zhang X, Wang Q, Wang L, et al. Green synthesis and influence of calcined temperature on the formation of novel porous diatomite microspheres for efficient adsorption of dyes. Powder Tech. 2018; 329:260–269. doi. 10.1007/s40145-017-0253-1.
Google Scholar
58
-
Salama A. Preparation of CMC-g-P(SPMA) super adsorbent hydrogels: Exploring their capacity for MB removal from waste water. Inter J Bio Macromol. 2018; 106:940–946. doi. 10.1016/j.ijbiomac.2017.08.097.
Google Scholar
59
-
Soleimani K, Tehrani D, Adeli M. Bioconjugated graphene oxide hydrogel as an effective adsorbent for cationic dyes removal. Ecotox and Environ Safety. 2018; 147:34–42. doi. 10.1016/j.ecoenv.2017.08.021.
Google Scholar
60
-
Hao J, Ji L, Li C, Hu C, Wu K. Rapid, efficient and economic removal of organic dyes and heavy metals from wastewater by zinc-induced in-situ reduction and precipitation of graphene oxide. J Taiwan Inst Chem Engg. 2017; 164:186-194. doi.10.1016/j.jtice.2018.03.045.
Google Scholar
61
-
Puri C, Sumana G. Highly effective adsorption of crystal violet dye from contaminated water using graphene oxide intercalated montmorillonite nanocomposite. Appli Clay Sci.2018; 166:102–112. doi. 10.1016/j.clay.2018.09.012.
Google Scholar
62
-
Magdya YH, Altaher H. Kinetic analysis of the adsorption of dyes from high strength wastewater on cement kiln dust. J Environ Chemi Eng.2018;6:834–841. doi. 10.1016/j.jece.2018.01.009.
Google Scholar
63
-
Wang Y, Zhu L, Wang X, Zheng W, Hao C,Jiang C, et al. Synthesis of aminated calcium lignosulfonate and its adsorption properties for azo dyes.J Industrial Eng Chem. 2017; 61:321-330.doi: 10.3389/fbioe.2021.691528.
Google Scholar
64
-
Yang R, Li D, Li A, Yang H. Adsorption properties and mechanisms of palygorskite for removal of various ionic dyes from water. Appl Clay Sci.2018; 151:20–28. doi.10.1016/j.clay.2017.10.016.
Google Scholar
65
-
Islam MA, Morton DW, Johnson BB, Mainali B, Angove MJ. Manganese oxides and their application to metal ion and contaminant removal from wastewater. J Water Process Eng. 2018; 26:264–280. doi.10.1016/j.jwpe.2018.10.018.
Google Scholar
66
-
Lei C, Pi M, Jiang C, Cheng B, Yu J. Synthesis of hierarchical porous zinc oxide (ZnO) microspheres with highly efficient adsorption of Congo red. J Colloid Interface Sci. 2017; 490:242-251. doi. 10.1016/j.jcis.2016.11.049.
Google Scholar
67
-
Lei C, Pi M, Cheng B, Jiang C, Qin J. Fabrication of hierarchical porous ZnO/NiO hollow microspheres for adsorptive removal of Congo red. Appl Surf Sci. 2018; 435:1002-1010. doi.10.1016/j.apsusc.2017.11.201.
Google Scholar
68
-
Lei C, Pi M, Xu D, Jiang C, Cheng B. Fabrication of hierarchical porous ZnO-Al2O3microspheres with enhanced adsorption performance. Appl Surf Sci. 2017;426:360-368. doi. 10.1016/j.apsusc.2017.07.095.
Google Scholar
69
-
Chen H, Motuzas J, Martens W, Diniz da Costa JC. Degradation of Orange II Dye Under Dark Ambient Conditions by MeSrCuO (Me = Mg and Ce) Metal Oxides.Sep Purification Tech. 205:293-301. 2018; doi.org/10.1016/j.seppur.2018.05.029.
Google Scholar
70
-
Ibrahim MM, El-Molla SA, Ismail SA. Influence of ɣ and ultrasonic irradiations on the physicochemical properties of CeO2-Fe2O3-Al2O3 for textile dyes removal applications. J Mole Struc. 2018; 1158:234-244.doi.10.1016/j.molstruc.2018.01.034.
Google Scholar
71
-
Qaiyum MA, Mohanta J, Kumari R, Samal PP, Dey B., Dey S. Alkali treated water chestnut (Trapa natans L.) shells as a promising phytosorbent for malachite green removal from water. IntJ Phytoremediation, 2021;doi. 10.1080/15226514.2021.1977912.
Google Scholar
72
-
Mohanta J, Kumari R, Qaiyum MA, Dey B, Dey S. Alkali assisted hydrophobic reinforcement of coconut fiber for enhanced removal of cationic dyes: equilibrium, kinetics and thermodynamic insight. Int J Phytoremediation.2021; 23(13):1423-1431 doi.org/10.1080/15226514.2021.1901850.
Google Scholar
73
-
Mohanta J, Kumari R, Dey B, Dey S. Highly Porous Iron–Zirconium-Zinc Ternary Metal Oxide: Cost Effective Synthesis and Efficient Removal of Malachite Green from Water. J. Chem. Engg. Data. 2021; 66(1):297-307. doi. 10.1021/acs.jced.0c00681
Google Scholar
74
-
Kumari R, Khan MA, Mahto M, Qaiyum MA, Mohanta J, Dey B, et al. Dewaxed Honeycomb as an Economic and Sustainable Scavenger for Malachite Green from Water. ACS Omega.2020; 5(31):19548–19556. doi.org/10.1021/acsomega.0c02011.
Google Scholar
75
-
Mohanta J, Dey B, Dey S.Magnetic Cobalt Oxide Nanoparticles: Sucrose-Assisted Self-Sustained Combustion Synthesis, Characterization, and Efficient Removal of Malachite Green from Water. J ChemEngg Data.2020; 65(5):2819–2829. doi.org/10.1021/acs.jced.0c00131.
Google Scholar
76
-
Mohanta J, Dey B, Dey S.Highly porous iron-zirconium binary oxide for efficient removal of Congo Red from water. Desali Water Treat.2020:189:227–242. doi.org/10.5004/dwt.2020.25570.
Google Scholar
77
-
Mohanta J, Dey B, Dey S. Sucrose-Triggered, Self-Sustained Combustive Synthesis of Magnetic Nickel Oxide Nanoparticles and Efficient Removal of Malachite Green from Water. ACS Omega. 2020; 5(27):16510–16520.doi.org/10.1021/acsomega.0c00999.
Google Scholar
78
-
Kumari R, Mohanta J, Dey B, Dey S. Eucalyptus leaf powder as an efficient scavenger for Congo red from water: Comprehensive batch and column investigation. Sep SciTech.2019; 55(17):3047-3059. doi.org/10.1080/01496395.2019.1670208.
Google Scholar
79
-
Kumari R, Dey S. A breakthrough column study for removal of malachite green using coco-peat. Int J Phyto.2019; 21(12):1263–1271. doi.org/10.1080/15226514.2019.1633252.
Google Scholar
80
-
Kumari R, Dey S (2019) Synthesis of porous iron – zirconium mixed oxide fabricated ethylene diamine composite for removal of cationic dye. 2019; Desalin. Water Treat., 158, 319–329. https://doi.org/10.5004/dwt.2019.24223
Google Scholar
81
-
Dey B, Dipty L, Dey S.Efficient Removal of Malachite Green using Saal (Shorea robusta) Flower from Contaminated Water. Int J Green Herb Chem. 2018; 7(2):392-405. doi.org/10.24214/ijghc/gc/7/2/39205.
Google Scholar
82
-
Kumari R, Dey S. Facile Removal of Congo Red using Mahua (Madhuca longifolia) Seeds, A Low Cost Adsorbent. Int J Green and Herb Chem. 2019; 7(2):237-250. doi.org/10.24214/ijghc/gc/7/2/23750.
Google Scholar
83