Federal University of Technology Akure, Nigeria
Federal University of Technology Akure, Nigeria
* Corresponding author

Article Main Content

Proper incorporation of natural polymers such as chitosan, starch, or cellulose in the matrix of non-degradable polymers has been proposed to bring about a possible lasting solution to the menace caused by non-degradable plastics in the environment. Biodegradable composite films of low-density polyethylene-chitosan nanoparticles (LDPE/CHNP) has been prepared by solvent casting method. The physiochemical, thermal, biodegradability and microbial inhibition test of the biocomposite have also been investigated to optimize the prepared composite. Physiochemical, thermal, and microbial inhibition rate has been found to increase with increase in chitosan nanoparticles (CHNP) loading in the prepared matrix. The mechanical studies showed that the tensile strength and elastic modulus increased with increasing loading of chitosan nanoparticles. The improvement in the mechanical properties have been attributed to the compatibility of the composite. The prepared LDPE/CHNP biocomposite film with 15% chitosan nanoparticles showed maximum elastic modulus of 23.10 and tensile strength of 3.52, as well as the best dispersion of particles as revealed by the morphological studies of the composite films. The result of the biodegradation study showed that the degradation efficiency and rate increased in CHNP loading with 20% CHNP loading having the maximum degradation efficiency of 50% and rate 0.12 g/d after 21days. The biocomposite film prepared has proved to be degradable, having antimicrobial properties, thereby it could act as an eco-friendly alternative to conventional non-degradable plastics and could be applied in food packaging, fuel cell and wastewater treatment.

References

  1. Sushmitha B. S., Vanitha K. P., Rangaswamy B. E. Bioplastics – A Review. International Journal of Modern Trends in Engineering and Research (IJMTER), 2016;3(4): 411-413.
     Google Scholar
  2. Kim M., Lee S. Characteristics of crosslinked potato starch and starch-filled linear low- density polyethylene films. Journal of Carbohydrate Polymer, 2002;50: 331–337.
     Google Scholar
  3. Dharini S., Mamta, S. Biodegradable Polyethylene Bags. Institute of Technology, Nirma University, Ahmedabad, 2011;8(1): 382-481.
     Google Scholar
  4. Sunilkumar M., Francis T., Sujith A. Low density polyethylene–chitosan composites: A study based on biodegradation. Chemical Engineering Journal, 2012;204–206: 114-124.
     Google Scholar
  5. Corre D. B. Starch nanoparticles: a review. Journal of Biomacromolecules, 2010;11: 1139.
     Google Scholar
  6. Hu S. G., Jou C. H., Yang M. C. Protein adsorption, fibroblast activity and antibacterial properties of poly (3-hydroxybutyric acid-co-3-hydroxyvaleric acid) grafted with chitosan and chitooligosaccharide after immobilized with hyaluronic acid. Journal of Biomaterials, 2003;24: 2685–2693.
     Google Scholar
  7. Shahidi F., Abuzaytoun R. Chitin, chitosan, and co products: chemistry, production, applications, and health effects. Journal of Advance Food Nutrition. Resources, 2005;4:93–135.
     Google Scholar
  8. Rinaudo M. (2009). Chitin and chitosan Properties and applications. Progress in Polymer Science. 31: 603–632.
     Google Scholar
  9. Martino A. D., Sittinger M., Risbud M. V. Chitosan: A versatile biopolymer for orthopaedic tissue engineering. Journals of Biomaterials, 2005;5983-5990.
     Google Scholar
  10. Yeşim S. A, Başak G. Removal of Methyl Red, a cationic dye, Acid Blue 113, an anionic dye, from wastewaters using chitin and chitosan: influence of copper ions. Journal of Desalination and Water Treatment, 2017: 73: 289–300.
     Google Scholar
  11. Souza B.W., Cerqueira M. A., Martins J. T., Casariego A., Teixeira J. A., Vicente A. A. Influence of electric fields on the structure of chitosan edible coatings. Journal of Food Hydrocolloids, 2010;24: 330-335.
     Google Scholar
  12. Tan Y. M. Processing and evaluation of Low density polyethylene/Chitosan Antimicrobial films. Doctor of Philosophy Thesis. National University of Singapore, 2016.
     Google Scholar
  13. Sandeep S. L., Madhu K.D., Viveka S., Nagaraja G. K. Preparation and Properties of Biodegradable Film Composites Using Modified Cellulose Fibre-Reinforced with PVA. International Scholarly Research Network ISRN Polymer Science, 2012. ID 154314:1-8. doi:10.5402/2012/154314.
     Google Scholar
  14. Chung Y. C., Chen C. Y. Antibacterial characteristics and activity of acid-soluble chitosan. Journal of Bioresource Technology, 2008;99:2806-2814.
     Google Scholar
  15. Tunç S., Duman O. Preparation and characterization of biodegradable methyl cellulose/montmorillonite nanocomposite films. Application of Clay Science, 2010;48 (3): 414–424.
     Google Scholar
  16. Salgado P. R., Molina S. E., Petruccelli S., Mauri A. N. Biodegradable sunflower protein films naturally activated with antioxidant compounds. Journal of Food Hydrocolloids, 2010;24 (5): 525–533.
     Google Scholar
  17. Balouiri M., Sadiki M., Ibnsouda S. K. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 2016;6: 71–79.
     Google Scholar
  18. Liang J. Z. The elastic behaviour during capillary extrusion of LDPE/LLDPE blend melts. Journal of Polymer Testing, 2002;21: 69-74.
     Google Scholar
  19. Abd E. A., Hesham M., Ahmed M. Y. Antimicrobial low-density polyethylene/low-density polyethylene-grafted acrylic acid biocomposites based on rice bran with tea tree oil for food packaging applications. Journal of Thermoplastic Composite Materials, 2020:1–19. DOI: 10.1177/0892705720925140.
     Google Scholar
  20. Oluwasina O. O., Temitayo F., Oluwasegun J., Wahab, Nosa B. I. Enhancement of Physical and Mechanical Properties of Dioscorea Dumetorum Starch Films with Dialdehyde Starch Solution, 2017. doi: [10.1002/star.201700148].
     Google Scholar
  21. Fang Y., Tung M. A., Britt I. J., Yada S., Dalgleish D. G. Tensile and Barrier Properties of Edible Films Made from Whey Proteins. Journal of Food Science, 2002;67: 188-193.
     Google Scholar
  22. Zhang Y., Han J. H. Plasticization of Pea Starch Films with Monosaccharides and Polyols. Journal of Food Science, 2006;71: 253-261.
     Google Scholar
  23. Cervera M. F., Karjalainen M., Airaksinen S., Rantanen J., Krogars K. J., Heinamaki A. I., Colarte J. Y. Physical stability and moisture sorption of aqueous chitosan-amylose starch films plasticized with polyols. European Journal of Pharmaceuticals and Biopharmaceuticals, 2004;58: 69–76.
     Google Scholar
  24. Mali S., Sakanaka L. S., Yamashita F., Grossmann M. V. Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Journal of Carbohydrate Polymer, 2005;60: 283.
     Google Scholar
  25. Chuayjuljit S., Hosililak S., Athisart A. Thermoplastic cassava starch/sorbitolmodified montmorillonite nanocomposites blended with low density polyethylene: properties and biodegradability study. Journal of Matals, Materials and Minrals, 2009;19: 59–65.
     Google Scholar
  26. Omer B. M., Ertan A., Gulsen A. E. Electrical, optical and mechanical properties of chitosan biocomposites, Journal of Composite Materials, 2019;0(0):1–14. DOI: 10.1177/0021998319883916.
     Google Scholar
  27. Prodpran T., Benjaku S. A. properties and microstructure of proteinbasedfilm from round scad (Decapterus maruadsi) muscle as affected by palm oil and chitosan incorporation. International Journal of Biological Macromolecules, 2007;41: 605–614.
     Google Scholar
  28. Saraswathy G., Pal S., Rose C., Sastry T. P. A novel bio-inorganic bone implant containing deglued bone, chitosan and gelatin. Indian Academy of Sciences, Bulletin of Material Science, 2001;24: 415–420.
     Google Scholar
  29. Wanchoo R. K., Sharma P. K. Viscometric study on the compatibility of some water- soluble polymer-polymer mixtures. Europeans Polymer Journal, 2003;39:1481–1490.
     Google Scholar
  30. Abreu D. A., Paseiro P. L., Nngulo I., Cruz J. M. Development of new polyolefin films with nanoclays for application in food packaging. Europeans Polymer Journal, 2007;43: 2229–2243.
     Google Scholar
  31. Kusumastuti Y., Timotius D., Putri1 N. R., Syabani M. W., Rochmadi. Rheological and kinetic studies of low density polyetyhlene (LDPE) – chitosan biocomposite film. IOP Conference Series: Journal of Material Science and Engineering, 2020;722: 012054. doi:10.1088/1757-899X/722/1/012054.
     Google Scholar
  32. Quiroz C. J., Rodríguez F. D., Grijalva M. H. Preparation of extruded polyethylene / chitosan blends compatibilized with polyethylene- graft –maleic anhydride. Journal of Carbohydrate Polymer, 2014;101: 1094–1100.
     Google Scholar
  33. Olajide A., Okoronkwo A. E., Oluwasina O. O., Abe T. O. Utilization of blue crab shells for the synthesis of chitosan nanoparticles and their characterization. Songklanakarin Journal of Science Technology, 2018;40 (5): 1043-1047.
     Google Scholar
  34. Wan Y., Wu H., Yu A., Wen D. Biodegradable Polylactide/Chitosan Blend Membranes. Journal of Biomacromolecules, 2006;7: 1362-1372.
     Google Scholar
  35. Bhawna S., Barakat M., Sam C., Emad M. E., El Barbary H. Physicochemical, antimicrobial and antioxidant properties of chitosan/TEMPO biocomposite packaging films. Journal of Food Packaging and Shelf Life, 2018;17: 73-79.
     Google Scholar
  36. Chatchai V., Worawat W., Suttipong W., Yuranan H., Kankavee S., Nollapan N., Siwaruk C., Witchukorn P., Suchada J., Apirat L. Antimicrobial, Conductive, and Mechanical Properties of AgCB/PBS Composite System. Journal of Chemistry, 2009. ID:3487529.
     Google Scholar
  37. Soni B., Schilling W., Hassan E. B., Mahmoud B. Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties. Journal of Carbohydrate Polymers, 2016;51: 779–789.
     Google Scholar
  38. Tharanathan R. N. Biodegradable films and composite coatings: past, present and future. Trends in Food Science and Technology, 2013;14: 71-78.
     Google Scholar